Functions and Parameters L
CS106A, Stanford University

Learning Goals

1. Get more practice with function parameters
2. Understand information flow in a program
3. Learn about Python's doctest feature

Recall, Our Friend the Function

I”

def main () : function “cal

avg =[average(5.0, 10.2)]

print (avg)

function “definition”

(aef average (a, b):‘\

sum = a + b

return sum / 2
_ y,

Recall, Our Friend the Function

arguments

def main() :) A \

avg = average (5.0, 10.2)

print (avg)

parameters
def average(a, b):
sum = a + b
return sum / 2

Parameters

Parameters let
you provide a
function with
some information
when you are
calling it.

A Full Program

Constant - wvisible to all functions
MAX NUM = 4

def main|() :
for i in range (MAX NUM) :
print (i, factorial(i))

def factorial (n):
result =1
for i in range(l, n + 1):
result *= i

return result

A Full Program

Constant - wvisible to all functions
MAX NUM = 4

def main|() :
for i in range (MAX NUM) :
print (i, factorial(i))

def factorial (n):
result =1
for i in range(l, n + 1):
result *= 1

return result

Understand the mechanism

def main () :
for i in range (MAX NUM) :
print (1, factorial(i))

def ma
for

in():
i in range (MAX NUM)|:
print (1, factorial(i))

def main () :
for 1 in rangekMAx NUM}:
print (i, factorial(i))

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))

def main () :
for i in range (MAX NUM) :

print (1, Efactorial (1)

def factorial (n):
result = 1
for i in range(l, n + 1):
result *= 1

return result

n 0 result

def factorial (n):

result = 1

for i in range(l, n + 1):
result *= 1

return result

n 0 result

def factorial (n):
result =1

for|i in range(l, n + 1):

result *= 1

return result

n 0 result

def factorial (n):
result =1

for i in rangekl, n + 1)|:

result *= 1

return result

n 0 result

def factorial (n):
result = 1
for i in range(l, n + 1):
result *= 1

return result

n 0 result

def main () :
for i in range (MAX NUM) :
print (1, factorial(i))
A\ J

Y

1

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial (i)
\

Y

1

def main() :
for i in range [MAX NUM] :
print (1, factorial(i))

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))

def main () :
for i in range (MAX NUM) :

print (1, factorIal(i)

def factorial (n):
result = 1
for i in range(l, n + 1):
result *= 1

return result

n 1 result

def factorial (n):

result = 1

for i in range(l, n + 1):
result *= 1

return result

n 1 result

def factorial (n):
result =1

for i in range(l, n + 1):

result *= 1

return result

n 1 result

def factorial (n)
result = 1

for 1 in range

result *=

return result

i

(1,

n + 1)|:

result

def factorial (n):
result = 1
for i in range(l, n + 1):

result *= 1

return result

n 1 result

def factorial (n)
result = 1

for 1 in range

result *=

return result

i

(1,

n + 1)|:

result

def factorial (n):
result = 1
for i in range(l, n + 1):
result *= 1

return result

n 1 result

def main () :
for i in range (MAX NUM) :
print (1, factorial(iL)

V

1

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))
) - V -

1

def main () :
for i in range (MAX NUM) :
print (1, factorial(i))

def main () :
for 1 in rangekMAx NUMb:
print (i, factorial(i))

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))

def main () :
for 1 in range(MAX_NUM):

print (1, |factorial (1)

def main () :
for i in range (MAX NUM) :
print (1, éfactorial(ij))

Y

2

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))
) - V -

2

N =R O

N R

def main () :

for 1 in range(MAX NUM) |

print (1, factorlal(l))

N =R O

N B R

def main () :
for 1 in rangekMAx NUM]:
print (i, factorial(i))

N =R O

N R R

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))

N =R O

N R

def main () :
for 1 in range(MAX_NUM):

print (1, |factorial (1)

N =R O

N B R

def main () :
for i in range (MAX NUM) :
print (1, éactorial(iL)

v

6

N =R O

N R

def main () :
for 1 in range (MAX_NUM):

|_print (1, factorial(i))
) - V -

6

(VIR \C I i e

ONBR R

def main () :

for i in range (MAX NUM] :

print (1, factorial(i))

(VIR \C I i e

aON PR R

def main () :
for 1 in rangekMAx NUM]:
print (i, factorial(i))

(VIR \C I i e

oON PR R

def main () :
for i in range (MAX NUM) :
print (1, factorial(i))

Donel!

(VIR \C I i e

aON PR R

Parameters

Every time a function is
called, new memory is
created for that call.

Parameter values are
passed in.

All local variables start
fresh (no old values)

An 1nterlude:
doctest

Doctest

def factorial(n):
This function returns the factorial of n
Input: n (number to compute the factorial of)
Returns: value of n factorial
Doctests:
>>> factorial(3)
6
>>> factorial(l)
1
>>> factorial(0)
1
result =1
for i in range(l, n + 1):
result *= 1
return result

def factorial(n):

miImn

Doctest

This function returns the factorial of n
Input: n (number to compute the factorial of)
Returns: value of n factorial

Doctests:

>>> factorial(3)
6

>>> factorial(l)
1

>>> factorial(0)
1

mnimnn

result = 1

Say this was in file "fact.py"
To run doctests (on PC):

> py -m doctest fact.py -v

for i in range(1l, n + 1):

result *= 1
return result

Testing: Why doesn’t your program work?

Let's €
ry 1t!!

Bad Times With functions

{
NOTE: This program is buggy!'! fé,@f S -
/
s 'O"o ?‘/;90@0
def add five (x): o,

Xx += 5

def main () :
x =3
add five (x)
print("x = " + str(x))

Bad Times With functions

NOTE: This program is buggy!'!

def add five(x):
x += 5

def main() :
x =3
add five (x)
print("x = " + str(x))

Good Times With functions

NOTE: This program is feeling just fine...

def add five(x):
Xx += 5
return x

def main() :
x =3
x = add five (x)
print("x = " + str(x))

Good Times With functions

NOTE: This program is feeling just fine...

def add five(x):
Xx += 5
return x

def main() :

x =3
X = add five(x)
print("x = " + str(x))

When we want to
“reassign” x inside a
helper function,
employ the

x = change (x)
pattern!

Parameter passing mechanism

When a parameter is passed during a
function call, a new variable is
created for the lifetime of the
function call.

That new variable may or may not
have the same name as the value that
was passed in!

No inherent connection between these two

NOTE: This program is buggy!'!

def add f iv
x += 5

/
- “ These are two
- - .
-~ separate variables.
’/ They are not linked!
de in() :
3 Only relationship:

4 fi value of main’s x is
L1V used when creating

print("x = " + str(x)) add five’sx

A VNN %N N

SPOILER ALERT

S O O © \§ 8§

Later on in class... we will see cases
where changes to variables in helper
functions seem to persist! It will be
great. We will let you know when we
get there and exactly when that

happens!

Careful!

No Functions in Functions

def main () :
print ("hello world")
def say goodbye() :
print ("goodbye!")

Technically legal, but often a sign at
the start that you are confusing
function definition and function call

No functions in functions

def main () :
print ("hello world")
say goodbye ()

def say goodbye() :
print ("goodbye!")

Learning Goals

1. Get more practice with function parameters
2. Understand information flow in a program
3. Learn about Python's doctest feature

The Whole Burrito:
calendar.py

