
Functions and Parameters
CS106A, Stanford University

Learning Goals

1. Get more practice with function parameters
2. Understand information flow in a program

3. Learn about Python's doctest feature

def main():

avg = average(5.0, 10.2)

print(avg)

def average(a, b):

sum = a + b

return sum / 2

Recall, Our Friend the Function

function “definition”

function “call”

def main():

avg = average(5.0, 10.2)

print(avg)

def average(a, b):

sum = a + b

return sum / 2

Recall, Our Friend the Function

parameters

arguments

Parameters

Parameters let
you provide a
function with

some information
when you are

calling it.

Constant – visible to all functions

MAX_NUM = 4

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

A Full Program

Constant – visible to all functions

MAX_NUM = 4

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

A Full Program

Understand the mechanism

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

result0n i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result0n i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result0n 1i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result0n 1i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result0n 1i

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0i

1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0i

1

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

result1n i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result1n i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result1n 1i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result1n i

0 1

1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result1n 1i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result1n 2i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):

result = 1

for i in range(1, n + 1):

result *= i

return result

1result1n 2i

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

1i

1

0 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

1i

1

0 1

1 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1

1 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1

1 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1

1 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1

1 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

2i

2

0 1

1 1

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

2i

2

0 1

1 1

2 2

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1

1 1

2 2

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1

1 1

2 2

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1

1 1

2 2

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1

1 1

2 2

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

3i

6

0 1

1 1

2 2

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

3i

6

0 1

1 1

2 2

3 6

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1

1 1

2 2

3 6

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1

1 1

2 2

3 6

def main():

for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1

1 1

2 2

3 6

Done!

Parameters

Every time a function is
called, new memory is

created for that call.

Parameter values are
passed in.

All local variables start
fresh (no old values)

An interlude:

doctest

Doctest

def factorial(n):
"""
This function returns the factorial of n
Input: n (number to compute the factorial of)
Returns: value of n factorial
Doctests:
>>> factorial(3)
6
>>> factorial(1)
1
>>> factorial(0)
1
"""
result = 1
for i in range(1, n + 1):

result *= i
return result

Doctest

def factorial(n):
"""
This function returns the factorial of n
Input: n (number to compute the factorial of)
Returns: value of n factorial
Doctests:
>>> factorial(3)
6
>>> factorial(1)
1
>>> factorial(0)
1
"""
result = 1
for i in range(1, n + 1):

result *= i
return result

Say this was in file "fact.py"
To run doctests (on PC):

> py -m doctest fact.py -v

Testing: Why doesn’t your program work?

Let's try it!!

NOTE: This program is buggy!!

def add_five(x):

x += 5

def main():

x = 3

add_five(x)

print("x = " + str(x))

Bad Times With functions

NOTE: This program is buggy!!

def add_five(x):

x += 5

def main():

x = 3

add_five(x)

print("x = " + str(x))

Bad Times With functions

NOTE: This program is feeling just fine...

def add_five(x):

x += 5

return x

def main():

x = 3

x = add_five(x)

print("x = " + str(x))

Good Times With functions

NOTE: This program is feeling just fine...

def add_five(x):

x += 5

return x

def main():

x = 3

x = add_five(x)

print("x = " + str(x))

Good Times With functions

When we want to
“reassign” x inside a
helper function,
employ the
x = change(x)

pattern!

Parameter passing mechanism

When a parameter is passed during a
function call, a new variable is
created for the lifetime of the
function call.

That new variable may or may not
have the same name as the value that
was passed in!

NOTE: This program is buggy!!

def add_five(x):

x += 5

def main():

x = 3

add_five(x)

print("x = " + str(x))

No inherent connection between these two

These are two
separate variables.
They are not linked!

Only relationship:
value of main’s x is
used when creating
add_five’s x

Later on in class… we will see cases
where changes to variables in helper
functions seem to persist! It will be
great. We will let you know when we
get there and exactly when that
happens!

Careful!

def main():

print("hello world")

def say_goodbye():

print("goodbye!")

No Functions in Functions

Technically legal, but often a sign at
the start that you are confusing

function definition and function call

def main():

print("hello world")

say_goodbye()

def say_goodbye():

print("goodbye!")

No functions in functions

Learning Goals

1. Get more practice with function parameters
2. Understand information flow in a program

3. Learn about Python's doctest feature

The Whole Burrito:

calendar.py

