
Lists
CS106A, Stanford University

Housekeeping

• Assignment #2 due today

• Assignment #3 goes out today (Due on Mon., Apr. 25)

– Can do Part 1 after today's class

– Can do Part 2 after this coming Monday's class

Reviewing Parameters and

Good Programming Style

Global Variables: Bad Style
Constant – visible to all functions
NUM_DAYS_IN_WEEK = 7

Global variable – visible to all functions
balance = 0

def main():
balance = int(input("Initial balance: "))
while True:

amount = int(input("Deposit (0 to quit): "))
if amount == 0:

break
deposit(amount)

def deposit(amount):
balance += amount

Different variables with the same name!

Super confusing!

• Also, really BAD style
– So bad, that Python won't even let you do

it unless you basically add a command
that says "I want to have bad style"

– I'm not going to show you that command
in Python
– But, if you know it already, DON'T use it!

– We're in polite company

Using Parameters: Good Style

def main():
balance = int(input("Initial balance: "))
while True:

amount = int(input("Deposit (0 to quit): "))
if amount == 0:

break
balance = deposit(balance, amount)

def deposit(balance, amount):
balance += amount
return balance

Encapsulation Principle:

Data used by a function

should be a parameter or

encapsulated in function

Don't want using your toaster

to impact your refrigerator!

The Python Console

• Can run Python interactively using the "console"

– In PyCharm click "Python Console" tab at bottom of window

– In Terminal, run Python (e.g., typing "py" or "python3" or
"python", depending on your platform) to get console

• Console has prompt: >>>

– Can type and execute Python statements (and see results)

– Example:
>>> x = 5

>>> x

5

– Easy way to try things out to answer questions you may have

– Console prompt looks like doctest indicator

– Use exit() to leave console

Let’s Take the Console

Out For a Spin…

And Then There Were None

• The term None is used in Python to describe "no value"

– For example, it is the value you would get from a function
that doesn't return anything

– WHAT?!

– Example:
>>> x = print("hi")

>>> print(x)

None

– Comparing anything to None (except None) is False

• Why does None exist?

– Denotes when the suitcase for a variable has "nothing" in it

Learning Goals

1. Learning about lists in Python
2. Writing code to use lists

3. Understand how lists work as parameters

Lists

What is a List?

• A list is way to keep track of an ordered collection of
items

– Items in the list are called "elements"

– Ordered: can refer to elements by their position

– Collection: list can contain multiple items

• The list dynamically adjusts its size as elements are
added or removed

• Lists have a lot of built-in functionality to make using
them more straightforward

Show Me the Lists!

• Creating lists
– Lists start/end with brackets. Elements separated by commas.

my_list = [1, 2, 3]

reals = [4.7, -6.0, 0.22, 1.6]

strs = ['lots', 'of', 'strings', 'in', 'list']

mix = [4, 'hello', -3.2, True, 6]

empty_list = []

• List with one element is not the same as the element

– Could try this out on the console:
>>> list_one = [1]

>>> one = 1

>>> list_one == one

False

Accessing Elements of List

• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are indexed

– Indexes start from 0

• Access individual elements:
letters[0] is 'a'

letters[4] is 'e'

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4

letters

Accessing Elements of List

• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are indexed

– Indexes start from 0

• Access individual elements:
letters[0] is 'a'

letters[4] is 'e'

• Can set individual elements like regular variable:
letters[0] = 'x'

'x' 'b' 'c' 'd' 'e'

0 1 2 3 4

letters

Getting Length of a List

• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can get length of list with len function:

len(letters) is 5

– Elements of list are indexed from 0 to length – 1

• Example:
for i in range(len(letters)):

print(i, "->", letters[i])

0 -> a

1 -> b

2 -> c

3 -> d

4 -> e

List Length: The Advanced Course

• Recall our old friends:
my_list = [1, 2, 3]

reals = [4.7, -6.0, 0.22, 1.6]

strs = ['lots', 'of', 'strings', 'in', 'list']

mix = [4, 'hello', -3.2, True, 6]

empty_list = []

• Pop quiz!
len(my_list)

len(reals)

len(strs)

len(mix)

len(empty_list)

= 3

= 4

= 5

= 5

= 0

The Strangeness of Indexing

• Can use negative index to work back from end of list

– What?!

letters = ['a', 'b', 'c', 'd', 'e']

• Bring me the strangeness!
letters[-1] is 'e'

letters[-2] is 'd'

letters[-5] is 'a'

– For indexes, think of –x as same as len(list)–x

letters[-1] is same as letters[len(letters)-1]

• How about this?
letters[6]

IndexError: list index out of range

Building Up Lists

• Can add elements to end of list with .append

alist = [10, 20, 30]

10 20 30alist

[10, 20, 30]

Building Up Lists

• Can add elements to end of list with .append

alist = [10, 20, 30]

alist.append(40)

alist 10 20 30 40

[10, 20, 30, 40]

Building Up Lists

• Can add elements to end of list with .append

alist = [10, 20, 30]

alist.append(40)

alist.append(50)

alist 10 20 30 40 50

[10, 20, 30, 40, 50]

Building Up Lists

• Can add elements to end of list with .append

alist = [10, 20, 30]

alist.append(40)

alist.append(50)

new_list = []

alist 10 20 30 40 50

new_list empty list

[10, 20, 30, 40, 50]

[]

Building Up Lists

• Can add elements to end of list with .append

alist = [10, 20, 30]

alist.append(40)

alist.append(50)

new_list = []

new_list.append('a')

alist 10 20 30 40 50

new_list 'a'

[10, 20, 30, 40, 50]

['a']

Building Up Lists

• Can add elements to end of list with .append

alist = [10, 20, 30]

alist.append(40)

alist.append(50)

new_list = []

new_list.append('a')

new_list.append(4.3)

alist 10 20 30 40 50

new_list 'a' 4.3

[10, 20, 30, 40, 50]

['a', 4.3]

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

alist 10 20 30 40 50

[10, 20, 30, 40, 50]

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

alist 10 20 30 40

[10, 20, 30, 40]

x 50

50

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

x = alist.pop()

alist 10 20 30

[10, 20, 30]

x 40

40

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

x = alist.pop()

x = alist.pop()

alist 10 20

[10, 20]

x 30

30

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

x = alist.pop()

x = alist.pop()

x = alist.pop()

alist 10

[10]

x 20

20

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

x = alist.pop()

x = alist.pop()

x = alist.pop()

x = alist.pop()

alist

[]

x 10

10

empty list

Removing Elements from Lists

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

x = alist.pop()

x = alist.pop()

x = alist.pop()

x = alist.pop()

alist

[]

x 10

10

empty list

What is we did one more?
x = alist.pop()

Don't do it, Mehran!
There might be

children watching!!

IndexError: pop from empty list

More Fun With Lists

• Can I get a couple new lists, please?
num_list = [1, 2, 3, 4]

str_list = ['Ruth', 'John', 'Sonia']

• Printing lists (here, we show using the console):
>>> print(num_list)

[1, 2, 3, 4]

>>> print(str_list)

['Ruth', 'John', 'Sonia']

• Check to see if list is empty (empty list is like "False")
if num_list:

print('num_list is not empty')

else:

print('num_list is empty')

Even More Fun With Lists

• Can I get a couple new lists, please?
num_list = [1, 2, 3, 4]

str_list = ['Ruth', 'John', 'Sonia']

• Check to see if a list contains an element:
x = 1

if x in num_list:

do something

• General form of test (evaluates to a Boolean):
element in list

– Returns True if element is a value in list, False otherwise

– Could use as test in a while loop too

List Function Extravaganza (part 1)!

• Function: list.pop(index) # pop can take parameter

– Removes (and returns) an element at specified index
>>> fun_list = ['a', 'b', 'c', 'd']

>>> fun_list.pop(2)

'c'

>>> fun_list

['a', 'b', 'd']

• Function: list.remove(elem)

– Removes (and returns) first occurrence of element in list
>>> another_list = ['a', 'b', 'b', 'c']

>>> another_list.remove('b')

>>> another_list

['a', 'b', 'c']

– ValueError if you try to remove an element that isn't in list

List Function Extravaganza (part 2)!

• Function: list.extend(other_list)

– Adds all element from other list to list that function is called on
>>> list1 = [1, 2, 3]

>>> list2 = [4, 5]

>>> list1.extend(list2)

>>> list1

[1, 2, 3, 4, 5]

• append is not the same as extend
– Append adds a single element, extends merges a list onto another
>>> list1 = [1, 2, 3]

>>> list2 = [4, 5]

>>> list1.append(list2)

>>> list1

[1, 2, 3, [4, 5]]

List Function Extravaganza (part 3)!

• Using + operator on lists works like extend , but
creates a new list. Original lists are unchanged.
>>> list1 = [1, 2, 3]

>>> list2 = [4, 5]

>>> list3 = list1 + list2

>>> list3

[1, 2, 3, 4, 5]

• Can use += operator just like extend
>>> list1 = [1, 2, 3]

>>> list2 = [4, 5]

>>> list1 += list2

>>> list1

[1, 2, 3, 4, 5]

List Function Extravaganza (part 4)!

• Function: list.index(elem)

– Returns index of first element in list that matches parameter elem
>>> alist = ['a', 'b', 'b', 'c']

>>> i = alist.index('b')

>>> i

1

– ValueError if you ask for index of an element that isn't in list

• Function: list.insert(index, elem)

– Inserts elem at the given index. Shifts all other elements down.
>>> jedi = ['luke', 'rey', 'obiwan']

>>> jedi.insert(1, 'mehran')

>>> jedi

['luke', 'mehran', 'rey', 'obiwan']

– Don't give up on your dreams…

List Function Extravaganza (part 5)!

• Function: list.copy()

– Returns a copy of the list
>>> actual_jedi = ['luke', 'rey', 'obiwan']

>>> fantasy = actual_jedi.copy()

>>> fantasy

['luke', 'rey', 'obiwan']

>>> fantasy.insert(1, 'mehran')

>>> fantasy

['luke', 'mehran', 'rey', 'obiwan']

>>> actual_jedi

['luke', 'rey', 'obiwan']

List Function Extravaganza (part 6)!

reals = [3.6, 2.9, 8.0, -3.2, 0.5]

• Function: max(list)
– Returns maximal value in the list
>>> max(reals)

8.0

• Function: min(list)
– Returns minimal value in the list
>>> min(reals)

-3.2

• Function: sum(list)
– Returns sum of the values in the list
>>> sum(reals)

11.8

Looping Through List Elements

str_list = ['Ruth', 'John', 'Sonia']

• For loop using range:

for i in range(len(str_list)):

elem = str_list[i]

print(elem)

• We can use a new kind of loop
called a "for-each" loop
for elem in str_list:

print(elem)

• These loops both iterate over all elements of the list

– Variable elem is set to each value in list (in order)

Ruth

John

Sonia

Output:

For-Each Loop Over Lists

str_list = ['Ruth', 'John', 'Sonia']

for elem in str_list:

Body of loop

Do something with elem

• Like variable i in for loop using range(),
elem is a variable that gets updated with each
loop iteration.

• elem gets assigned to each element in the list
in turn.

This code gets
repeated once for

each element in list

Looping Through List Elements

• General form of for-each loop:

for element in collection:

do something with element

• element can be any variable you want to use to refer to
items in the collection

– On each iteration through the loop, element will be set to be
the next item (in order) in the collection

– Recall, example:
for elem in str_list:

print(elem)

– Lists are collections

– We'll see other kinds of collections later in course

We’ll continue with

lists next class!

