CS106A, Stanford University

e '

Housekeeping

AN 7

-

* Assignment #2 due today

e Assignment #3 goes out today (Due on Mon., Apr. 25)
— Can do Part 1 after today's class

— Can do Part 2 after this coming Monday's class

Reviewing Parameters and
Good Programming Style

Global Variables: Bad Style

Constant - visible to all functions
NUM DAYS IN WEEK = 7

Global variable - visible to all functions
balance = 0

\ Different variables with the same name!
inq!
def main(): Super confusing!

balance = int(input("Initial balance: "))

while True:
amount = int(input("Deposit (@ to quit): "))
if amount ==

break * Also, really BAD style

deposit(amount) — So bad, that Python won't even let you do

it unless you basically add a command

that says "l want to have bad style"
def deposit(amount): ys W v Y

balance += amount — !'m not going to show you that command
in Python

— But, if you know it already, DON'T use it!
— We're in polite company

Using Parameters: Good Style

Don't want using your toaster
to impact your refrigerator!

def main():
balance = int(input("Initial balance: "))
while True:
amount = int(input("Deposit (@ to quit): "))
if amount ==
break
balance = deposit(balance, amount)

Encapsulation Principle:
Data used by a function
should be a parameter or
encapsulated in function

def deposit(balance, amount):
balance += amount
return balance

The Python Console

* Can run Python interactively using the "console"
— In PyCharm click "Python Console" tab at bottom of window
— In Terminal, run Python (e.g., typing "py" or "python3" or
"python", depending on your platform) to get console
* Console has prompt: >>>
— Can type and execute Python statements (and see results)

— Example:
>>> x = 5
>>> x
5

— Easy way to try things out to answer questions you may have
— Console prompt looks like doctest indicator
— Use exit () to leave console

Let’s Take the Console
Out For a Spin..

And Then There Were None

* The term None is used in Python to describe "no value”

— For example, it is the value you would get from a function
that doesn't return anything

— WHAT?!

— Example:
>>> x = print("hi")
>>> print (x)
None

— Comparing anything to None (except None) is False

* Why does None exist?
— Denotes when the suitcase for a variable has "nothing" in it

Learning Goals

1. Learning about lists in Python
2. Writing code to use lists
3. Understand how lists work as parameters

LL1sts

What is a List?

* Alistis way to keep track of an ordered collection of
items

— Items in the list are called "elements"

— Ordered: can refer to elements by their position
— Collection: list can contain multiple items

* The list dynamically adjusts its size as elements are
added or removed

* Lists have a lot of built-in functionality to make using
them more straightforward

Show Me the Lists!

* Creating lists
— Lists start/end with brackets. Elements separated by commas.
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

e List with one element is not the same as the element

— Could try this out on the console:
>>> list one = [1]

>>> one =1

>>> list one == one

False

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are indexed
— Indexes start from O

letters — 'a' 'b' 'c'! 'd’ 'e'!
0 1 2 3 4

e Access individual elements:
letters[0] is 'a'
letters[4] iIs 'e'

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are indexed
— Indexes start from O

letters — 'x'! 'b' 'c! 'd’ 'e'!
0 1 2 3 4

e Access individual elements:
letters[0] is 'a'
letters[4] iIs 'e'

e Can set individual elements like regular variable:
letters[0] = 'x'

Getting Length of a List

e Consider the following list:
letters = ['a', 'b', '¢', 'd', 'e']
e Can get length of list with 1en function:

len(letters) is 5
— Elements of list are indexed from 0 to length -1

 Example:

for i in range(len(letters)):
print(i, "->", letters[i])

0O -> a
1 ->Db
2 -> C
3 ->d
4 -> e

List Length: The Advanced Course

* Recall our old friends:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) =
len (reals)
len(strs)
len (mix)
len (empty list) =

o o1 o1 &~ W

The Strangeness of Indexing

e Can use negative index to work back from end of list
— What?!

letters = ['a', 'b', '¢', 'd', 'e']

* Bring me the strangeness!
letters[-1] is 'e'
letters[-2] is 'd’
letters[-5] is 'a'

— For indexes, think of —x assameas len(list)-x
letters[-1] is sameas letters[len(letters)-1]

e How about this?
letters|[6]

IndexError: list index out of range

Building Up Lists

* Can add elements to end of list with . append
alist = [10, 20, 30]

alist =—p| 10 20 30
[10, 20, 30]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)

alist =—p| 10 20 30 40
[10, 20, 30, 40]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

new list = []

new list = empty list

[]
alist=—»| 10 [20 | 30 | 40 | 50

[10, 20, 30, 40, 50]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

new list = []

new list.append('a')

new list =——p| '3’

['a’]

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

new list = []

new list.append('a')
new list.append(4.3)

new list =——p| 'a' [4.3

['a', 4.3]

alist=—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

X —— 50
50

alist =—p| 10 20 30 40
[10, 20, 30, 40]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()

X m—— 40
40

alist =—p| 10 20 30
[10, 20, 30]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()

X m—p | 30
30

alist =——p| 10 20
[10, 20]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

X m—— | 20
20

alist =——p| 10
[10]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
= alist.pop()
= alist.pop()
= alist.pop()

-

= alist.pop()

X m— 10
10

alist =—> empty list
[]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

What is we did one more?

x = alist.pop()

IndexError: pop from empty list

= alist.pop()
= alist.pop()
= alist.pop()

-

= alist. 4 - A
alist.pop () Don't do it, Mehran!

X m— | 10 There might be
10 children watching!!

v)
alist =——p empty list - % -

[]

More Fun With Lists

 Can |l getacouple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

* Printing lists (here, we show using the console):
>>> print(num list)
[1, 2, 3, 4]
>>> print(str list)
['Ruth', 'John', 'Sonia']

* Check to see if list is empty (empty list is like "False")
if num list:
print('num list is not empty')
else: B
print('num list is empty')

Even More Fun With Lists

 Can |l getacouple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

 Check to see if a list contains an element:
x =1
if x in num list:
do something

* General form of test (evaluates to a Boolean):
element in list

— Returns True if element is a value in list, False otherwise _
— Could use as test in awhile loop too :

List Function Exiravaganza (part 1)!

* Function: list.pop (index) # pop can take parameter
— Removes (and returns) an element at specified index
>>> fun list = ['a', 'b', 'c', 'd']
>>> fun list.pop(2)
!
>>> fun list
['a', 'b', 'd']

* Function: list. remove (elem)

— Removes (and returns) first occurrence of element in list
>>> another 1list = ['a', 'b', 'b', 'c']
>>> another list.remove('b')

>>> another 1list

['a', 'b', 'c']

— ValueError if you try to remove an element that isn't in list

List Function Exiravaganza (part 2)!

* Function: list. extend (other list)

— Adds all element from other list to list that function is called on
>>> listl = [1, 2, 3]

>>> list2 = [4, 5]

>>> listl.extend(list2)

>>> listl

[1, 2, 3, 4, 5]

« append is not the same as extend

— Append adds a single element, extends merges a list onto another
>>> listl = [1, 2, 3]
>>> list2 = [4, 5]

>>> listl.append(list2)
>>> listl

[1, 2, 3, [4, 5]]

List Function Exiravaganza (part 3)!

e Using + operator on lists works like extend, but

creates a new list. Original lists are unchanged.
>>> listl = [1, 2, 3]

>>> list2 = [4, 5]

>>> list3 = listl + list2

>>> list3

[1, 2, 3, 4, 5]

* Can use += operator just like extend
>>> listl = [1, 2, 3]
>>> list2 = [4, 5]
>>> listl += list2
>>> listl
[1, 2, 3, 4, 5]

List Function Exiravaganza (part 4)!

* Function: list. index (elem)

— Returns index of first element in list that matches parameter elem
>>> alist = ['a', 'b', 'b', 'ec']

>>> 1 = alist.index('b')

>>> 1

1

— ValueError if you ask for index of an element that isn't in list

* Function: list.insert (index, elem)
— Inserts elem at the given index. Shifts all other elements down.
>>> jJedi = ['luke', 'rey', 'obiwan']
>>> jedi.insert(l, 'mehran')
>>> jedi
['luke', 'mehran', 'rey', 'obiwan']

— Don't give up on your dreams...

List Function Exiravaganza (part 5)!

* Function: list. copy ()

— Returns a copy of the list

>>> actual jedi = ['luke', 'rey', 'obiwan']
>>> fantasy = actual jedi.copy()

>>> fantasy

['luke', 'rey', 'obiwan']

>>> fantasy.insert(l, 'mehran')

>>> fantasy

['luke', 'mehran', 'rey', 'obiwan']

>>> actual jedi

['luke', 'rey', 'obiwan']

List Function Exiravaganza (part 6)!

reals = [3.6, 2.9, 8.0, -3.2, 0.5]

* Function: max (1ist)

— Returns maximal value in the list
>>> max (reals)
8.0

* Function: min (1ist)

— Returns minimal value in the list
>>> min (reals)
-3.2

* Function: sum(list)

— Returns sum of the values in the list
>>> sum(reals)
11.8

Looping Through List Elements

str list = ['Ruth', 'John', 'Sonia']

* For loop using range:
for i in range(len(str list)):
elem = str list[i]

print (elem)

. Output:
* We can use a new kind of loop [rutn
called a "for-each" loop John
for elem in str list: Sonia

print (elem)

 These loops both iterate over all elements of the list
— Variable elem is set to each value in list (in order)

For-Each Loop Over Lists

str list = ['Ruth', 'John', 'Sonia']

for elem in st:_list:

Body of loop } This code gets

Do something with elem repeated once fc?r
each element in list

* Like variable i in for loop using range (),
elem is a variable that gets updated with each
loop iteration.

« elemgets assigned to each element in the list
in turn.

Looping Through List Elements

* General form of for-each loop:

for element in collection:
do something with element

* element can be any variable you want to use to refer to
items in the collection

— On each iteration through the loop, element will be set to be
the next item (in order) in the collection

— Recall, example:
for elem in str 1list:

print (elem)
— Lists are collections
— We'll see other kinds of collections later in course

We’ll continue with
li1sts next class!

