
Images
CS106A, Stanford University

Housekeeping

• Handout: Image Reference Guide

– We'll be talking through a lot of that today

• Katie Creel will give a guest mini-lecture on the ethics
of image manipulation next class

– There are questions about that on Assignment #3, so you
definitely want to pay attention!

More on Lists

Lists as Parameters

• When you pass a list as a parameter you are passing a
reference to the actual list

– It's like getting a URL to the list (pass-by-reference)

– In function, changes to values in list persist after function ends

def add_five(num_list):

for i in range(len(num_list)):

num_list[i] += 5

def main():

values = [5, 6, 7, 8]

add_five(values)

print(values)

[10, 11, 12, 13]Output

When Passed as Parameters

Types that are "immutable"

int
float
bool
string

list

(we'll see more soon)

Types that are "mutable"

• When you assign new value
to variable, you are assigning
luggage tag (name) to a new
value.

• For parameters, the original
variable value you passed in
is not changed when
function is done.

• When you are changing the
variable in place, the luggage
tag does not change, but the
value inside the luggage does.

• For parameters, it means
original variable value you
passed in is changed when
function is done.

More on Lists as Parameters

• But, watch out if you create a new list in a function
– Creating a new list means you're no longer dealing with list

passed in as parameter.

– It's like the URL you are using is pointing to a different page.
(You have assigned the luggage tag to a new value in function.)

– At that point you are no longer changing parameter passed in
def create_new_list(num_list):

num_list.append(9)

num_list = [1, 2, 3]

def main():

values = [5, 6, 7, 8]

create_new_list(values)

print(values)

[5, 6, 7, 8, 9]Output

Note on Loops and Lists

list = [10, 20, 30]

• For loop using range:

for i in range(len(list)):

list[i] += 1 # Modifying list in place

• For-each loop:
for elem in list: # Modifying local variable

elem += 1 # elem. If elem is immutable

type, not changing list!

• Often use for loop with range when modifying
elements of list (when elements are immutable types)

• Often use for-each loop when not modifying elements
of list or when elements are mutable types

Putting it all together:

averagescores.py

[, , ,]

Learning Goals: Images

1. Understanding how images are represented
2. Learning about the SimpleImage library

3. Writing code that can manipulate images

Images

What is an Image?

• Image made of square pixels

– Example: flower.png

• Each pixel has x and y coordinates in the image

– The origin (0, 0) is at the upper-left corner

– y increases going down, x increases going right

• Each pixel has single color encoded as 3 RGB values

– R = red; G = green; B = blue

– Each value represents brightness for
that color (red, green, or blue)

– Can set RGB values to make any color!

y

(0,0) x

Pixels in an Image Close-Up

Working with Images:

Pillow and the

SimpleImage library

Installing Pillow

• Pillow is a version of the Python Imaging Library (PIL)
– Nick Parlante built SimpleImage library using Pillow

– You'll be using SimpleImage in this class

– So, you need to install Pillow first

• To install Pillow, open PyCharm Terminal tab and type
(note the capital P in Pillow):
– On a PC: py -m pip install Pillow

– On a Mac: python3 -m pip install Pillow

– Will see something like:

...bunch of stuff...

Successfully installed Pillow-9.1.0

• Handout: Image Reference Guide contains more
information

Using SimpleImage Library

• In folders for assignment or lecture on images, there is
a file simpleimage.py

– This is the SimpleImage library

• To use the SimpleImage library in your code, include at
the top of your program file:

from simpleimage import SimpleImage

• This is importing the SimpleImage module, so that it is
accessible in the code you write
– Similar to when you used import random to use random

number generator library

Functions in SimpleImage Library

• Create a SimpleImage object by reading an image from
file (jpg, png, gif, etc.) and store it in a variable.

– Note: each SimpleImage object is made up of Pixel objects

my_image = SimpleImage(filename)

• Show the image on your computer.
my_image.show()

• We can manipulate an image by changing its pixels

• We can also create new images and set its pixels

Accessing Pixels in an Image

• We can use a "for-each" loop to access pixel in an image

• Recall basic for loop (using range):

for i in range(num):

i will go from 0 to num - 1

do_something()

• For-each loop:

for item in collection:

Do something with item

• For-each loop with image:
image = SimpleImage("flower.jpg")

for pixel in image:

Do something with pixel

For-Each Loop Over Pixels

image = SimpleImage("flower.jpg")

for pixel in image:

Body of loop

Do something with pixel

• Like variable i in for loop using range(),
pixel is a variable that gets updated with
each loop iteration.

• pixel gets assigned to each pixel object in
the image in turn.

This code gets
repeated once for
each pixel in image

Properties of Images and Pixels

• Each SimpleImage image has properties you can access:
– Can get the width and height of image (values are in pixels)

image.width, image.height

• Each pixel in an image also has properties:
– Can get x, y coordinates of a pixel in an image

pixel.x , pixel.y

– Can get RGB values of a pixel

pixel.red, pixel.green, pixel.blue
• These are just integers between 0 and 255
• Higher R, G, or B values means more of that color in pixel

– Pixels are mutable objects!
– Can set pixel RGB values in an image to change it!

Example: A Darker Image

Image objects are mutable (like lists). If you change one in a

function, the changes persist after function ends.

def darker(image):
"""
Makes image passed in darker by halving red, green, blue
values. Note: changes in image persist after function ends.
"""
Demonstrate looping over all the pixels of an image,
changing each pixel to be half its original intensity.
for pixel in image:

pixel.red = pixel.red // 2
pixel.green = pixel.green // 2
pixel.blue = pixel.blue // 2

def main():
flower = SimpleImage('images/flower.png')
darker(flower)
flower.show()

Example: Get Red Channel

def red_channel(filename):
"""
Reads image from file specified by filename.
Changes the image as follows:
For every pixel, set green and blue values to 0
yielding the red channel.
Return the changed image.
"""
image = SimpleImage(filename)
for pixel in image:

pixel.green = 0
pixel.blue = 0

return image

Example: Grayscale

def compute_luminosity(red, green, blue):
"""
Calculates luminosity of a pixel using NTSC formula.
"""
return (0.299 * red) + (0.587 * green) + (0.114 * blue)

def grayscale(filename):
"""
Read image from file specified by filename. Change image to
grayscale using the NTSC luminosity formula and return it.
"""
image = SimpleImage(filename)
for pixel in image:

lum = compute_luminosity(pixel.red, pixel.green, pixel.blue)
pixel.red = lum
pixel.green = lum
pixel.blue = lum

return image

Let's take it out for a spin!

imageexamples.py

Greenscreening

What is Greenscreening?

• Like the movies (and Zoom backgrounds)
– Have original image with areas that are "sufficiently green."

– Replace "green" pixels with pixels from corresponding x, y locations
in another image

What is Greenscreening?

• Like the movies (and Zoom backgrounds)
– Have original image with areas that are "sufficiently green."

– Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)

What is Greenscreening?

• Like the movies (and Zoom backgrounds)
– Have original image with areas that are "sufficiently green."

– Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:

What is Greenscreening?

• Like the movies (and Zoom backgrounds)
– Have original image with areas that are "sufficiently green."

– Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:

average = (pixel.red + pixel.green + pixel.blue) // 3
See if this pixel is "sufficiently" green
if pixel.green >= average * INTENSITY_THRESHOLD:

What is Greenscreening?

• Like the movies (and Zoom backgrounds)
– Have original image with areas that are "sufficiently green."

– Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:

average = (pixel.red + pixel.green + pixel.blue) // 3
See if this pixel is "sufficiently" green
if pixel.green >= average * INTENSITY_THRESHOLD:

If so, overwrite pixel in original image with
corresponding pixel from the back image.
x = pixel.x
y = pixel.y
image.set_pixel(x, y, back.get_pixel(x, y))

return image

Let's try it!

(But using red instead of green)

Learning Goals

1. Understanding how images are represented
2. Learning about the SimpleImage library

3. Writing code that can manipulate images

