
More Lists
CS106A, Stanford University

Review:

Lists as parameters

Swapping Elements in a List - Sad

def swap_elements_buggy(elem1, elem2):

temp = elem1

elem1 = elem2

elem2 = temp

def main():

my_list = [10, 20, 30]

swap_elements_buggy(my_list[0], my_list[1])

print(my_list)

[10, 20, 30]Output:

Swapping Elements in a List - Happy

def swap_elements_working(alist, index1, index2):

temp = alist[index1]

alist[index1] = alist[index2]

alist[index2] = temp

def main():

my_list = [10, 20, 30]

swap_elements_working(my_list, 0, 1)

print(my_list)

[20, 10, 30]Output:

More fun with images!

Mirroring an image

Recall, Images

• Image made of square pixels

– Example: flower.png

• Each pixel has x and y coordinates in the image

– The origin (0, 0) is at the upper-left corner

– y increases going down, x increases going right

• Each pixel has single color encoded as 3 RGB values

– R = red; G = green; B = blue

– Each value represents brightness for
that color (red, green, or blue)

– Can set RGB values to make any color!

y

(0,0) x

Nested Loops
image = SimpleImage(filename)

width = image.width

height = image.height

for y in range(height):

for x in range(width):

pixel = image.get_pixel(x, y)

do something with pixel

x (width)y (height)

Mirroring an Image

def mirror_image(filename):

image = SimpleImage(filename)

width = image.width

height = image.height

Create new image to contain mirror reflection

mirror = SimpleImage.blank(width * 2, height)

for y in range(height):

for x in range(width):

pixel = image.get_pixel(x, y)

mirror.set_pixel(x, y, pixel)

mirror.set_pixel((width * 2) - (x + 1), y, pixel)

return mirror

I wanna see it!

What's The Difference?

def darker(filename):

img = SimpleImage(filename)

for y in range(img.height):

for x in range(img.width):

px = img.get_pixel(x, y)

px.red = px.red // 2

px.green = px.green // 2

px.blue = px.blue // 2

return img

def darker(filename):

img = SimpleImage(filename)

for px in img:

px.red = px.red // 2

px.green = px.green // 2

px.blue = px.blue // 2

return img

Nothing!

We only want to use nested for loops if
we care about x and y.

(Needed that for mirroring image.)

Learning Goals

1. Understanding how images are represented
2. Learning about the SimpleImage library

3. Writing code that can manipulate images

What are the ethics of this?

Welcome: Dr. Katie Creel

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

What are Slices?

• Can cut up lists into "slices"

– Slices are just sub-portions of lists

– Slices are also lists themselves

– Slicing creates a new list

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

aslice = alist[2:4]

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

'c' 'd'

0 1

aslice

What are Slices?

• Can cut up lists into "slices"

– Slices are just sub-portions of lists

– Slices are also lists themselves

– Slicing creates a new list

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

aslice = alist[2:4]

aslice[0] = 'x'

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

'x' 'd'

0 1

aslice

General Form of Slice

• General form to get a slice
list[start:end]

– Produces a new list with elements from list starting at index
start up to (but not including) index end

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

alist[2:4] → ['c', 'd']

alist[1:6] → ['b', 'c', 'd', 'e', 'f']

alist[0:3] → ['a', 'b', 'c']

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

6

I'll Take Another Slice!

• General form to get a slice
list[start:end]

– If start is missing, default to use 0 in its place
– If end is missing, default to use len(list) in its place

– Can also use negative indexes for start/end

alist[2:-2] → ['c', 'd']

alist[-2:] → ['e', 'f']

alist[:-1] → ['a', 'b', 'c', 'd', 'e']

alist[:] → ['a', 'b', 'c', 'd', 'e', 'f']

-6 -5 -4 -3 -2 -1

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

Advanced Slices

• General form to get a slice, with a step
list[start:end:step]

– Take slice from start to end, progressing by step

– step can be negative (go backwards, so start/end are flipped)

alist[1:5:2] → ['b', 'd']

alist[::2] → ['a', 'c', 'e']

alist[4:1:-1] → ['e', 'd', 'c'] # note start

alist[1:4:-1] → []

alist[::-1] → ['f', 'e', 'd', 'c', 'b', 'a']

-6 -5 -4 -3 -2 -1

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

Loops and Slices

• Can use for-each loop with slice

– Slice is just a list, so you can use it just like a list

– Recall loops with lists:

for i in range(len(list)):

do something with list[i]

for elem in list:

do something with elem

Loops and Slices

• Can use for-each loop with slice

– Slice is just a list, so you can use it just like a list

– Now, for loops with slices (note: step is optional)

for i in range(start, end, step):

do something with list[i]

for elem in list[start:end:step]:

do something with elem

• Remember: if step is negative, then start should
be greater than end

Deleting with Slices

• You can delete elements in a list with del

• Example:

>>> num_list = [50, 30, 40, 60, 90, 80]

>>> del num_list[1]

>>> num_list

[50, 40, 60, 90, 80]

• Can use del with slice notation:

>>> num_list = [50, 30, 40, 60, 90, 80]

>>> del num_list[1:4]

>>> num_list

[50, 90, 80]

Changing a List in Place

• Python provides some operations on whole list
– These functions modify list in place (doesn't create new list)

• Function: list.reverse()
– Reverses order of elements in the list
>>> fun_list = [6, 3, 12, 4]

>>> fun_list.reverse()

>>> fun_list

[4, 12, 3, 6]

• Function: list.sort()
– Sorts the elements of the list in increasing order
>>> fun_list = [6, 3, 12, 4]

>>> fun_list.sort()

>>> fun_list

[3, 4, 6, 12]

2-Dimensional

Lists

2-Dimensional List

• You can have a list of lists!

– Each element of "outer" list is just another list

– Can think of this like a grid

• Example:
grid = [[1, 2], [3, 4], [5, 6]]

• Can be easier to think of like this:

[1, 2] [3, 4] [5, 6]

0 1 2

grid

grid [1, 2] 0

[3, 4] 1

[5, 6] 2

2-Dimensional List

• Um, can you zoom in on that…

grid [1, 2] 0

[3, 4] 1

[5, 6] 2

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

2-Dimensional List

• To access elements, specify index in "outer" list, then
index in "inner" list
grid[0][0] → 1

grid[1][0] → 3

grid[2][1] → 6

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

grid[0][0]

1

grid[0][1]

2

grid[1][0]

3

grid[1][1]

4

grid[2][0]

5

grid[2][1]

6

