
List of Lists
CS106A, Stanford University

Movies to watch
"To Do" list
Chores
Wish list
Birthdays
Bucket list

Housekeeping

• Midterm will be on Tuesday, May 3rd from 7pm-9pm
– If you have an unmovable academic conflict, please let me

know via email by Monday, April 25th at 5pm
– In your email, please list all the times you’d be available to

take an alternate midterm between May 2nd and 4th
– I’ll notify you by April 30th of alternate midterm time

• We will provide a practice midterm next week, so
you can get a sense of topics on the actual exam

Learning Goals

1. Understand 2-dimensional lists (list of lists)
2. Get experience programming with 2-D lists

Review:
2-Dimensional Lists

(List of lists)

Recall, the 2-Dimensional List

• A 2-dimensional list is a "list of lists"
– Each element of "outer" list is just another list
– Can think of this like a grid

• Example:
grid = [[1, 2], [3, 4], [5, 6]]

• Can be easier to think of like this:

[1, 2] [3, 4] [5, 6]

0 1 2

grid

grid [1, 2] 0
[3, 4] 1
[5, 6] 2

2-Dimensional List

• Um, can you zoom in on that…

grid [1, 2] 0
[3, 4] 1
[5, 6] 2

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

2-Dimensional List

• To access elements, specify index in "outer" list, then
index in "inner" list
grid[0][0] ® 1
grid[1][0] ® 3
grid[2][1] ® 6

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

grid[0][0]
1

grid[0][1]
2

grid[1][0]
3

grid[1][1]
4

grid[2][0]
5

grid[2][1]
6

2-Dimensional List

• So what if I only specify one index?
grid[0] ® [1, 2]
grid[1] ® [3, 4]
grid[2] ® [5, 6]

• Remember, grid is just a list of lists
– Elements of "outer" list are just lists

grid 1 2

0 1

3 4

0 1

5 6

0 1

0

1

2

2-D lists as parameters

Swapping Elements in a Grid
def swap(grid, row1, col1, row2, col2):

temp = grid[row1][col1]
grid[row1][col1] = grid[row2][col2]
grid[row2][col2] = temp

def main():
my_grid = [[10, 20, 30], [40, 50, 60]]
swap(my_grid, 0, 1, 1, 2)
print(my_grid)

[[10, 60, 30], [40, 50, 20]]Output:

Time to get funky!

Getting Funky With Lists
• Do the inner lists all have to be the same size?
– No! Just be careful if they are not.
jagged = [[1, 2, 3], [4], [5, 6]]
jagged[0] ® [1, 2, 3]
jagged[1] ® [4]
jagged[2] ® [5, 6]

• Can I have more than two dimensions?
– Sure! You can have as many as you like (within reason).
cube = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
cube[0] ® [[1, 2], [3, 4]]
cube[0][1] ® [3, 4]
cube[0][1][0] ® 3

def main():
grid = [[10, 20], [40], [70, 80, 100]]
rows = len(grid)
for i in range(rows):

cols = len(grid[i])
for j in range(cols):

print("grid[" + str(i) + "][" + str(j)
+ "] = " + str(grid[i][j]))

Looping Through a List of Lists

grid[0][0] = 10
grid[0][1] = 20
grid[1][0] = 40
grid[2][0] = 70
grid[2][1] = 80
grid[2][2] = 100

Output:

def main():
grid = [[1, 2], [10, 11], [20, 21]]
rows = len(grid)
cols = len(grid[0])
for i in range(rows):

for j in range(cols):
print("grid[" + str(i) + "][" + str(j)

+ "] = " + str(grid[i][j]))

Simplified With a True Grid

grid[0][0] = 1
grid[0][1] = 2
grid[1][0] = 10
grid[1][1] = 11
grid[2][0] = 20
grid[2][1] = 21

Output:

def main():
grid = [[10, 20], [40], [70, 80, 100]]
for row in grid:

for elem in row:
print(elem)

Using For-Each With 2-D List

10
20
40
70
80
100

Output:

def create_grid(rows, cols, value):
grid = [] # Create empty grid
for y in range(rows): # Make rows one by one

row = []
for x in range(cols): # Build up each row

row.append(value) # by appending to list

grid.append(row) # Append row (list)
onto grid

return grid

Creating a 2-D List

>>> create_grid(2, 4, 1)
[[1, 1, 1, 1], [1, 1, 1, 1]]
>>> create_grid(3, 2, 5)
[[5, 5], [5, 5], [5, 5]]

Console:

Learning Goals

1. Understand 2-dimensional lists (list of lists)
2. Get experience programming with 2-D lists

[

]

[, , ,],
[, , ,],
[, , ,]

Learning Goals

1. Understand 2-dimensional lists (list of lists)
2. Get experience programming with 2-D lists

Can I get some
more of #2?

Putting it all together:
tictactoe.py

(This program give you practice
with a lot of concepts!)

Added bonus: helpful for
Assignment #4

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

Creating the Board
def create_empty_board(n):

grid = [] # Create empty grid
for y in range(n): # Create rows one at a time

row = []
for x in range(n): # Build up each row by

row.append(None) # appending to a list

grid.append(row) # Append the row (list)
onto grid

return grid

Console:
>>> create_empty_board(3)
[[None, None, None], [None, None, None], [None, None, None]]

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

Printing the Board
def print_board(board):

rows = len(board) # Could use SIZE, but wanted to
cols = len(board[0]) # show general way to do this
for y in range(rows):

for x in range(cols):
symbol = board[y][x]
if not symbol: # Print space if

symbol = " " # symbol is None
print(symbol, end="")
if x < SIZE - 1: # Print | marker if

print(" | ", end="") # not at end of line
else:

print("") # Print end of line
if y < SIZE - 1: # Print row marker

print_row_separator(cols)

Printing the Board
def print_board(board):

rows = len(board) # Could use SIZE, but wanted to
cols = len(board[0]) # show general way to do this
for y in range(rows):

for x in range(cols):
symbol = board[y][x]
if not symbol: # Print space if

symbol = " " # symbol is None
print(symbol, end="")
if x < SIZE - 1: # Print | marker if

print(" | ", end="") # not at end of line
else:

print("") # Print end of line
if y < SIZE - 1: # Print row marker

print_row_separator(cols)

print_board([['X',None,'O'], [None,'O',None], ['X',None,'X']])

Printing the Row Separator
def print_row_separator(columns):

print("--+", end="")
for i in range(1, columns - 1):

print("---+", end="")
print("--")

Console:
>>> print_row_separator(3)
--+---+--

Printing the Board
def print_board(board):

rows = len(board) # Could use SIZE, but wanted to
cols = len(board[0]) # show general way to do this
for y in range(rows):

for x in range(cols):
symbol = board[y][x]
if not symbol: # Print space if

symbol = " " # symbol is None
print(symbol, end="")
if x < SIZE - 1: # Print | marker if

print(" | ", end="") # not at end of line
else:

print("") # Print end of line
if y < SIZE - 1: # Print row marker

print_row_separator(cols)

print_board([['X',None,'O'], [None,'O',None], ['X',None,'X']])

X | | O
--+---+--
| O |

--+---+--
X | | X

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

Getting a Player's Move
def player_turn(board, symbol):

valid_move = False
while not valid_move:

print() # Blank line
print(symbol + "'s move")
row = int(input("Row: "))
col = int(input("Col: "))
Make sure move is on board and in empty space
if row < 0 or row >= SIZE or col < 0 or col >= SIZE \

or board[row][col]:
print("Invalid move. Try again.")

else:
board[row][col] = symbol # Record valid move
valid_move = True

>>> grid = [['X',None,'O'],[None,'O',None],['X',None,'X']]
>>> player_turn(grid, 'O')

O's move
Row: 0
Col: 1
>>> grid
[['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

Checking For a Winner
def check_winner(board):

for row in range(SIZE): # Check rows
winner = check_row(board, row)
if winner:

return winner

for col in range(SIZE): # Check columns
winner = check_column(board, col)
if winner:

return winner

Check diagonals
winner = check_down_diagonal(board)
if winner:

return winner
winner = check_up_diagonal(board)
return winner # Could be None if no winner

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]
>>> check_winner(grid)

Checking For a Winner
def check_winner(board):

for row in range(SIZE): # Check rows
winner = check_row(board, row)
if winner:

return winner

for col in range(SIZE): # Check columns
winner = check_column(board, col)
if winner:

return winner

Check diagonals
winner = check_down_diagonal(board)
if winner:

return winner
winner = check_up_diagonal(board)
return winner # Could be None if no winner

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]
>>> check_winner(grid)

Checking a Row for a Winner
def check_row(board, row):

symbol = board[row][0]
for col in range(1, SIZE):

If we find non-matching symbol then no winner
if board[row][col] != symbol:

return None
return symbol # Only get here if all symbols match

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]
>>> print(check_row(grid, 0))
None

Checking For a Winner
def check_winner(board):

for row in range(SIZE): # Check rows
winner = check_row(board, row)
if winner:

return winner

for col in range(SIZE): # Check columns
winner = check_column(board, col)
if winner:

return winner

Check diagonals
winner = check_down_diagonal(board)
if winner:

return winner
winner = check_up_diagonal(board)
return winner # Could be None if no winner

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]
>>> check_winner(grid)

Checking a Column for a Winner
def check_column(board, col):

symbol = board[0][col]
for row in range(1, SIZE):

If we find non-matching symbol then no winner
if board[row][col] != symbol:

return None
return symbol # Only get here if all symbols match

>>> grid = [['X',None,'O'],[None,'O',None],['X',None,'X']]
>>> print(check_column(grid, 0))
None

Checking For a Winner
def check_winner(board):

for row in range(SIZE): # Check rows
winner = check_row(board, row)
if winner:

return winner

for col in range(SIZE): # Check columns
winner = check_column(board, col)
if winner:

return winner

Check diagonals
winner = check_down_diagonal(board)
if winner:

return winner
winner = check_up_diagonal(board)
return winner # Could be None if no winner

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]
>>> check_winner(grid)

Checking Diagonal Down for a Winner
def check_down_diagonal(board):

symbol = board[0][0]
for row in range(1, SIZE):

if board[row][row] != symbol:
return None

return symbol # Only get here if all symbols match

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]
>>> print(check_down_diagonal(grid))
None

Checking For a Winner
def check_winner(board):

for row in range(SIZE): # Check rows
winner = check_row(board, row)
if winner:

return winner

for col in range(SIZE): # Check columns
winner = check_column(board, col)
if winner:

return winner

Check diagonals
winner = check_down_diagonal(board)
if winner:

return winner
winner = check_up_diagonal(board)
return winner # Could be None if no winner

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]]
>>> check_winner(grid)

Checking Diagonal Up for a Winner
def check_up_diagonal(board):

symbol = board[0][SIZE - 1]
for row in range(1, SIZE):

if board[row][SIZE - 1 - row] != symbol:
return None

return symbol # Only get here if all symbols match

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]]
>>> print(check_up_diagonal(grid))
None

Checking For a Winner
def check_winner(board):

for row in range(SIZE): # Check rows
winner = check_row(board, row)
if winner:

return winner

for col in range(SIZE): # Check columns
winner = check_column(board, col)
if winner:

return winner

Check diagonals
winner = check_down_diagonal(board)
if winner:

return winner
winner = check_up_diagonal(board)
return winner # Could be None if no winner

>>> grid = [['X', 'O', 'O'], [None, 'O', None], ['X', None, 'X']]]
>>> check_winner(grid)
None

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

Flipping the Player Turn
def flip_turn(symbol):

if symbol == 'X':
return 'O'

else:
return 'X'

The Main Program
SIZE = 3 # The board used will be SIZE x SIZE
def main():

winner = None
board = create_empty_board(SIZE)
player = 'X' # Player X goes first
num_moves = 0

while winner == None: # Take turns until a winner
print_board(board)
player_turn(board, player)
num_moves += 1 # Keep track of total moves
winner = check_winner(board)
if not winner:

if num_moves == SIZE ** 2: # If all spaces full
winner = "No one" # then no winner.

player = flip_turn(player)

print_board(board)
print(winner + " won!")

