
Dictionaries
CS106A, Stanford University

Housekeeping

• Midterm will be on Tuesday, May 3rd from 7pm-9pm
– Location by first letter of last name:

• Last name: A-H in room: 420-040

• Last name: I-Z in room: CEMEX Aud

– Midterm covers material through class on April 27

– Open book/notes, but will need to bring printed reference
material

• Will be using BlueBook software to take the exam
– BlueBook will not allow you to access other

applications/files on your computer during the exam

Review of String
PUNCTUATION = '.!?,-:;'

def delete_punctuation(s):

"""

Removes punctuation characters from a string and

returns the resulting string.

"""

result = ''

for char in s:

Check char is not a punctuation mark

if char not in PUNCTUATION:

result += char # append non-punctuation chars

return result

Calling: delete_punctuation('REMOVE -the- punctuation!!!')

Returns: 'REMOVE the punctuation'

Reading Lines from a File
def count_words(filename):

count = 0

with open(filename, 'r') as file: # Open file to read

for line in file:

line = line.strip() # Remove newline

word_list = line.split() # Create list of words

for word in word_list: # Print words

print("#" + str(count) + ": " + word)

count += 1

print(filename + " contains " + str(count) + " words")

Very few

words here.

testfile.txt

#0: Very

#1: few

#2: words

#3: here.

testfile.txt contains 4 words

Console:

Learning Goals

1. Learning about dictionaries
2. Building programs using dictionaries

Dictionaries

What are Dictionaries?

• Dictionaries associate a key with a value

– Key is a unique identifier

– Value is something we associate with that key

• Examples in the real world:

– Phonebook
• Keys: names
• Values: phone numbers

– Dictionary
• Keys: words
• Values: word definitions

– US Government
• Keys: Social Security number
• Values: Information about an individual's employment

Dictionaries in Python

• Creating dictionaries

– Dictionary start/end with braces

– Key:Value pairs separated by colon

– Each pair is separated by a comma

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

squares = {2: 4, 3: 9, 4: 16, 5: 25}

phone = {'Pat': '555-1212', 'Jenny': '867-5309'}

empty_dict = {}

ages 'Chris' 32

'Juliette' 22

'Mehran' 50

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Like a set of variables that are indexed by keys

• Use key to access associated value:
ages['Chris'] is 32

ages['Mehran'] is 50

ages 'Chris' 32

'Juliette' 22

'Mehran' 50

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Like a set of variables that are indexed by keys

• Use key to access associated value:
ages['Chris'] is 32

ages['Mehran'] is 50

• Can set values like regular variable:
ages['Mehran'] = 18

ages 'Chris' 32

'Juliette' 22

'Mehran' 18

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Like a set of variables that are indexed by keys

• Use key to access associated value:
ages['Chris'] is 32

ages['Mehran'] is 50

• Can set values like regular variable:
ages['Mehran'] = 18

ages['Mehran'] += 3

ages 'Chris' 32

'Juliette' 22

'Mehran' 21

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Like a set of variables that are indexed by keys

• Good and bad times with accessing pairs:
>>> juliettes_age = ages['Juliette']

>>> juliettes_age

22

>>> santas_age = ages['Santa Claus']

KeyError: 'Santa Claus'

ages 'Chris' 32

'Juliette' 22

'Mehran' 21

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Like a set of variables that are indexed by keys

• Checking membership
>>> 'Juliette' in ages

True

>>> 'Santa Claus' not in ages

True

ages 'Chris' 32

'Juliette' 22

'Mehran' 21

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone Empty dictionary

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'

phone 'Pat' '555-1212'

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'

phone['Jenny'] = '867-5309'

phone 'Pat' '555-1212'

'Jenny' '867-5309'

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'

phone['Jenny'] = '867-5309'

phone['Pat'] = None

phone 'Pat' None

'Jenny' '867-5309'

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'

phone['Jenny'] = '867-5309'

phone['Pat'] = None

phone['Pat'] = '867-5309'

phone 'Pat' '867-5309'

'Jenny' '867-5309'

A Word About Keys/Values

• Keys must be immutable types

– E.g., int, float, string

– Keys cannot be changed in place

– If you want to change a key, need to remove key/value pair
from dictionary and then add key/value pair with new key.

• Values can be mutable or immutable types

– E.g., int, float, string, lists, dictionaries

– Values can be changed in place

• Dictionaries are mutable

– Changes made to a dictionary in a function persist after the
function is done.

Changing List in a Function

def have_birthday(dict, name):

print("You're one year older, " + name + "!")

dict[name] += 1

def main():

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

print(ages)

have_birthday(ages, 'Chris')

print(ages)

have_birthday(ages, 'Mehran')

print(ages)

{'Chris': 32, 'Juliette': 22, 'Mehran': 50}

You're one year older, Chris!

{'Chris': 33, 'Juliette': 22, 'Mehran': 50}

You're one year older, Mehran!

{'Chris': 33, 'Juliette': 22, 'Mehran': 51}

Terminal:

Dicta-palooza! (Part 1)

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Function: dict.get(key)

– Returns value associated with key in dictionary. Returns None if
key doesn't exist.

>>> print(ages.get('Chris'))

32

>>> print(ages.get('Santa Claus'))

None

• Function: dict.get(key, default)

– Returns value associated with key in dictionary. Returns default if
key doesn't exist.

>>> print(ages.get('Chris', 100))

32

>>> print(ages.get('Santa Claus', 100))

100

Dicta-palooza! (Part 2)

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Function: dict.keys()

– Returns something similar to a range of the keys in dictionary

– Can use that to loop over all keys in a dictionary:

for key in ages.keys():

print(str(key) + " -> " + str(ages[key]))

– Can turn keys() into a list, using the list function
>>> list(ages.keys())

['Chris', 'Juliette', 'Mehran']

Chris -> 32

Juliette -> 22

Mehran -> 50

Terminal:

Dicta-palooza! (Part 3)

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Can also loop over a dictionary using for-each loop just
using name of dictionary:

for key in ages:

print(str(key) + " -> " + str(ages[key]))

Chris -> 32

Juliette -> 22

Mehran -> 50

Terminal:

Dicta-palooza! (Part 4)

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Function: dict.values()

– Returns something similar to a range of the values in dictionary

– Can use that to loop over all keys in a dictionary:

for value in ages.values():

print(value)

– Can turn values() into a list, using the list function
>>> list(ages.values())

[32, 22, 50]

32

22

50

Terminal:

Dicta-palooza! (Part 5)

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Function: dict.pop(key)

– Removes key/value pair with the given key. Returns value from
that key/value pair.

>>> ages

>>> {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

>>> ages.pop('Mehran')

50

>>> ages

{'Chris': 32, 'Juliette': 22}

• Function: dict.clear()

– Removes all key/value pairs in the dictionary.
>>> ages.clear()

>>> ages

{}

Functions You Can Apply

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• Function: len(dict)

– Returns number of key/value pairs in the dictionary
>>> ages

{'Chris': 32, 'Juliette': 22, 'Mehran': 50}

>>> len(ages)

3

• Function: del dict[key]

– Removes key/value pairs in the dictionary.

– Similar to pop, but doesn't return anything.
>>> ages

{'Chris': 32, 'Juliette': 22, 'Mehran': 50}

>>> del ages['Mehran']

>>> ages

{'Chris': 32, 'Juliette': 22}

Putting it all together:

count_each_word.py

(And we'll also throw in files

as a bonus concept!)

Bonus fun:

phonebook.py

Learning Goals

1. Learning about dictionaries
2. Building programs using dictionaries

{'breakfast': ,

'lunch': ,

'dinner': }

