
Classes + Objects
CS106A, Stanford University

Housekeeping

• Hope you're well!
• The Stanford Honor Code

– CS106A retraction policy
• Wrote my own code, got help from LaIR/staff → good
• Looked up how a particular function worked online → good
• Talked with my friends about strategies/approaches → good
• Copied solution code from another source/person → bad
• Friend and I collaborated on one solution and both turned it in → bad

– Be honest with yourself about what happened
– Deadline to retract any assignments: May 27th

Review: Sorting

Basic Sorting

• The sorted function orders elements in a collection in
increasing (non-decreasing) order

– Can sort any type that support < and == operations

– For example: int, float, string

– sorted returns new collection (original collection unchanged)

>>> nums = [8, 42, 4, 8, 15, 16]

>>> sorted_list = sorted(nums)

>>> sorted_list

[4, 8, 8, 15, 16, 42]

Intermediate Sorting

• Can sort elements in decreasing (non-increasing) order

– Use the optional parameter reverse=True

>>> nums = [8, 42, 4, 8, 15, 16]

>>> sorted(nums, reverse=True)

[42, 16, 15, 8, 8, 4]

>>> strs = ['banana', 'CHERRY', 'apple', 'donut']

>>> sorted(strs, reverse=True)

['donut', 'banana', 'apple', 'CHERRY']

• Note case sensitivity of sorting strings!

– Any uppercase letter is less than any lowercase letter

– For example: 'Z' < 'a'

Advanced Sorting

• Sorting using a custom function

– Use the optional parameter key=<function name>

– Elements sorted based on value returned from key function

def get_len(s):

return len(s)

def main():

strs = ['a', 'bbbb', 'cc', 'zzz']

sorted_strs = sorted(strs, key=get_len)

print(sorted_strs)

['a', 'cc', 'zzz', 'bbbb']

Output:

Super Deluxe Advanced Sorting

• Sorting a list of tuples with a custom function
– Use the optional parameter key=<function name>

def get_count(food):

return food[1]

def main():

foods = [('apple', 5), ('banana', 2), ('chocolate', 137)]

sort_names = sorted(foods)

print(sort_names)

sort_count = sorted(foods, key=get_count)

print(sort_count)

rev_sort_count = sorted(foods, key=get_count, reverse=True)

print(rev_sort_count)

[('apple', 5), ('banana', 2), ('chocolate', 137)]

[('banana', 2), ('apple', 5), ('chocolate', 137)]

[('chocolate', 137), ('apple', 5), ('banana', 2)]

Output:

(, , ,)
Yes, that's in sorted order!

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

Object-Oriented Programming

(OOP)

It's not a mistake!

Object-Oriented Programming

• There are different paradigms in programming

• So far, you've learned imperative programming

– Provide series of direct commands for program execution

– Commands are changing the program's state

• Object-oriented programming

– Define objects that contain data and behavior (functions)

– Program is (mostly) an interaction between objects

– You are calling functions of objects (called "methods")

• Python allows for programming in either paradigm!

– Other programming paradigms exist, but we won't talk
about those in this class

What are Classes and Objects?

• Classes are like blueprints

– They provide a template for a kind of object

– They define a new type

– E.g., "Human" would be a class

• Generally, have two arms, have two legs, breathe air, etc.

• Objects are instances of Classes

– Can have multiple objects of the same Class type

– E.g., You would be an instance of the Human class

• So, you have the properties of your Class (Human)

– There are lots of other people out there too

• You are all of type "Human"

• You are all objects of the same Class

Example of a Class in Python

• Let's create a Counter class

– Can ask is for the "next" ticket number

– Need to keep track of next ticket number

– Class names start with Uppercase character

– No main() function (Class is not a program)

class Counter:

Constructor

def __init__(self):

self.ticket_num = 0 # "instance" variable

Method (function) that returns next ticket value

def next_value(self):

self.ticket_num += 1

return self.ticket_num

Two (or double) underscores – called "dunder" for short

Let's See It In Action:

counter.py

Objects are Mutable

• When you pass an object as a parameter, changes to
object in that function persist after function ends

from counter import Counter # import the Class

def count_two_times(count):

for i in range(2):

print(count.next_value())

def main():

count1 = Counter()

count2 = Counter()

print('Count1: ')

count_two_times(count1)

print('Count2: ')

count_two_times(count2)

print('Count1: ')

count_two_times(count1)

Count1:

1

2

Count2:

1

2

Count1:

3

4

Output:

General Form for Writing a Class

• Filename for class is usually classname.py
– Filename is usually lowercase version of class name in file

class Classname:

Constructor

def __init__(self, additional parameters):

body

self.variable_name = value # example instance variable

Method

def method_name(self, additional parameters):

body

Constructor of a Class

• Constructor
– Syntax:

def __init__(self, additional parameters):

body

• Called when a new object is being created

– Does not explicitly specify a return value

– New object is created and returned

• Can think of constructor as the "factory" that creates
new objects

– Responsible for initializing object (setting initial values)

– Generally, where instance variables are created (with self)
self.variable_name = value # create instance variable

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

def __init__(self):

self.ticket_num = 0

count1
self.ticket_num 0

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 0

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

def __init__(self):

self.ticket_num = 0

count1
self.ticket_num 0

count2
self.ticket_num 0

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 0

count2
self.ticket_num 0

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 0

count2
self.ticket_num 0

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count1

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 0

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count1

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 0

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 0

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count2

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 1

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count2

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

count1
self.ticket_num 1

count2
self.ticket_num 1

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

Methods (Functions) in Class

• Methods (name used for functions in objects)
– Syntax:

def method_name(self, additional parameters):

body

• Works like a regular function in Python

– Can return values (like a regular function)

– Has access to instance variables (through self):
self.variable_name = value

– Called using an object:
object_name.method_name(additional parameters)

– Recall, parameter self is automatically set by Python as the
object that this method is being called on

• You write: number = count1.next_value()

• Python treats it as: number = next_value(count1)

Another Example: Students

• Want a Class to keep track information for Students

– Each student has information:

• Name

• ID number

• Units completed

– Want to specify a name and ID number when creating a
student object

• Initially, units completed set to 0

– Student's number of units completed can be updated over
time

– Also want to be able to check if a student can graduate

• Student needs to have at least UNITS_TO_GRADUATE units

Bring Me the Students!

student.py

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

