Classes + Memory
| CS106A,‘Stanfor\d University

Housekeeping

%

L .
-minute survey on
Embedded EthiCS @
e Survey about Embedded EthiCS Stanford

— https://forms.gle/GB9LzheQaUTfETMaA

CEA0
" M
— Or,use QR Code - - - 'ﬂﬂ%

Otk

Results will be reported to
& used to improve the
Embedded Ethics program

https://forms.gle/GB9LzheQaUTfETMaA

And now... a song about tuples!

Learning Goals

1. More practice with classes
2. See how to trace memory

EEW
classes and objects

Classes are like blueprints

class: A template for a new type of variable

Class Student

| (Blueprint for st W
=0] | < ngﬁ,n i,
VT, Ij/p Q J/O Vaf/'a b;?Q
Q b/(/ u n?ak €
elof'/hlc e

Student instances
(Objects)

Classes define new variable
types

Classes help decompose
your program across files

Classes Can Include Three Things

e Constructor

— Method (function) called when a new object is being created

« Methods

— Functions that you can call on an instance (object) of that class

* |nstance variables
— Variables inside each object of that class
— Referred to using self.variable name

Classes Review

dog.py dogworld.py
(;1ass Dog:) (}rom dog import Dog A
def init (self, breed): def main():
print ('A new dog is born') §1mba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')

self . breed = breed
simba.bark ()

juno.bark ()

def bark (self): simba.bark ()

if self.breed == 'pomeranian':
print('yip') print('simba', simba. dict)

else: print('juno', Jjuno. dict)
print ('woof') T B

self.times barked += 1

Classes Review

dog.py dogworld.py
@ AY#)

class Dog: rom dog import Dog

def _init_(self, breed): def main(): _
print ('A new dog is born') §1mba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')

self . breed = breed

simba.bark ()
juno.bark ()

def bark (self): i
. k
if self.breed == 'pomeranian': simba.bark ()
print('yip') print('simba', simba. dict)
else: print('juno', Jjuno. dict)

print ('woof')
self.times barked += 1

. VAN J

« Constructor is called each time we create a new object

Classes Review

dog.py

dogworld.py

-

_

class Dog:) (}rom dog import Dog
def init (self, breed): def main(): _
print ('A new dog is born') glmba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')
self.breed = breed _
simba.bark ()
def bark (self) : iﬁ;ﬁ;b§§§é1>
if self.breed == 'pomeranian':)
print('yip') print('simba', simba. dict)
else: print('juno', Jjuno. dict)
print ('woof') - -
self.times barked += 1
J _

 Instance variables are stored inside each object
« Each object has its own version of the instance variables

Classes Review

dog.py dogworld.py
(;lass Dog:) (}rom dog import Dog
def init (self, breed): def main(): _
print ('A new dog is born') §1mba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')
self.breed = breed _
simba.bark ()
(def bark (self): A g‘i‘:;:g;];]i)()
if self.breed == 'pomeranian': |
print('yip') print('simba', simba. dict)
else: print('juno', Jjuno. dict)
print ('woof')
self.times barked += 1
NS ZAN

« Methods are functions that can be called on a particular object

Classes Review

-

dog.py dogworld.py
class Dog:) (%rom dog import Dog
def init (self, breed): def main(): _
print('A new dog is born') simba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')
self.breed = breed _
simba.bark ()
def bark (self) : i?;ﬁ;biiiéi>
if self.breed == 'pomeranian':)
print('yip') print('simba', simba. dict)
else: print('juno', Jjuno. dict)
print ('woof') - -
self.times barked += 1
. J _

 When authoring a class, self means:

"the instance (aka object) I am currently working with"

Classes Review

dog.py dogworld.py
(;1ass Dog: (}rom dog import Dog
def init (self, breed): def main () :
print ('A new dog is born') glmba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')
self .breed = breed
simba.bark ()
def bark (self) : iﬁ;ﬁ;b§§§é1>
if self.breed == 'pomeranian':)
print('yip') print('simba', simba. dict)
else: print('juno', Jjuno. dict)
print ('woof') - -
self.times barked += 1
. _

A new dog is born

Classes Review

dog.py dogworld.py
(;1ass Dog: (}rom dog import Dog
def init (self, breed): def main(): _
print('A new dog is born') §1mba = Dog ('pomeranian')
self.times barked = 0 (Juno = Dog('great dane')
self.breed = breed _
simba.bark ()
def bark (self) : iﬁ;ﬁ;b§§§é1>
if self.breed == 'pomeranian':)
print('yip') print('simba', simba. dict)
else: print('juno', Jjuno. dict)
print ('woof') - -
self.times barked += 1
. \.

A new dog is born
A new dog is born

Classes Review

dog.py

dogworld.py

-

class Dog:

def init (self, breed):
print ('A new dog is born')
self.times barked = 0
self .breed = breed

def bark (self):

if self.breed == 'pomeranian':

print('yip')
else:

print ('woof')
self.times barked += 1

(¢

rom dog import Dog

def main|() :
simba = Dog('pomeranian')
juno = Dog('great dane')

simba.bark ()
juno.bark ()
simba.bark ()

print('simba', simba. dict)
print('juno', Juno._ dict)

A new dog is born
A new dog is born

yip

Classes Review

dog.py

dogworld.py

-

class Dog:

def init (self, breed):
print ('A new dog is born')
self.times barked = 0
self .breed = breed

def bark (self):

if self.breed == 'pomeranian':

print('yip')
else:

print ('woof')
self.times barked += 1

(¢

rom dog import Dog
def main|() :

simba = Dog('pomeranian')
juno = Dog('great dane')

simba.bark ()
|juno.bark ()
simba.bark ()

print('simba', simba. dict)
print('juno', Juno._ dict)

A new dog is born
A new dog is born
yip
woof

Classes Review

dog.py dogworld.py
(;1ass Dog:) (%rom dog import Dog A
def init (self, breed): def main():
print ('A new dog is born') simba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')

self . breed = breed
simba.bark ()

def bark (self): lgzzgébg;:éi)
if self.breed == 'pomeranian': -
print('yip')

print('simba', simba. dict)

else: print('juno', Jjuno. dict)

print ('woof')
self.times barked += 1

A new dog is born
A new dog is born
yip

woof

yip

. _dict_

* |nstance variables in an object are
stored in internal . dict _ variable

Classes Review

dog.py

dogworld.py

-

class Dog:

def init (self, breed):
print ('A new dog is born')
self.times barked = 0
self .breed = breed

def bark (self):
if self.breed ==
print('yip')
else:
print ('woof')
self.times barked += 1

'pomeranian’:

(¢

rom dog import Dog

def main|() :
simba =
juno =

simba.bark ()
juno.bark ()
simba.bark ()

Dog('pomeranian')
Dog('great dane')

print('simba',

print('juno', Juno.

simba. dict)l
dict

. _
A new dog is born
A new dog is born
yip
woof
yip
simba {'times barked': 'breed': 'pomeranian'}

Classes Review

dog.py dogworld.py
(;1ass Dog:) (%rom dog import Dog A
def _init_(self, breed): def main(): _
print ('A new dog is born') §1mba = Dog('pomeranian')
self.times barked = 0 juno = Dog('great dane')

self . breed = breed
simba.bark ()

def bark (self) : gz:;ébgztéi)
if self.breed == 'pomeranian':)
print ('yip') rint('simba', simba. dict)
else: [irint('juno', juno. dict)
print ('woof')

self.times barked += 1

A new dog is born

A new dog is born

yip

woof

yip

simba {'times barked': 2, 'breed': 'pomeranian'}
juno {'times barked': 1, 'breed': 'great dane'}

Recall Functions?

Coder: Function Coder: Function
Author Caller

Writes helper functions Uses helper functions
others can use

Classes also split up the work!

Coder: Class Coder: Class
Author Client

Writes the class (often in its Uses the new
own file), thus defining a variable type to solve
new variable type problems (often from

main).
. Because they are classy

W 1 Project

~avarites

o o [B Wy IR -

=
=

12
13
14
15

=
o

17

19
20
21
22
23
24
25
26
27

= dog.py

File: dog.py

Defines

mrrn

a Dog class.

class Dog:

def

def

__init_ (self, breed):

IR

Constructor for Dog. We set the breed of the dog when

the dog object is created.

print('A new dog is born')
self.times_barked = @

self.breed = breed

bark(self):

The kind of bark the dog makes depends on its breed.

IR

if self.breed == 'pomeranian’:
print('yip")
else:
print('woof")
self.times_barked += 1

Class Author: Writes the class, thus defining
a new variable type (often in its own file)

= dogworld.py

1
2

2

o 0o [T Wy I =

[y
o]

12
13
14
15

=
O

17

19
20
21
22
23
24

File: dogworld.py

Defines a Dog class.

mnn

from dog import Dog

def main():
simba = Dog('pomeranian')
juno = Dog('great dane')

simba.bark()
juno.bark()
simba.bark()

print('simba’, simba.__dict_)
print('juno’, Jjuno._ _dict_)

Class Client: Uses the new variable type
to solve problems (often from main).

Next step in writing large programs:
Better understand memory

You are now ready...

What does this do?

def main() :

x =5
print (id(x))
XxX=x+1

print (id (x))

What does this do?

def main() :

lx =5 J
print (id(x))
x=x+1

print (id(x))

stack o heap
main 4563589904
/ Overhead
X 4563589904 /I/
\l’a\\)e \ 5 J

What does this do?

def main() :

lx =5 J
print (id(x))
x=x+1

print (id(x))

stack o heap
- | e (e
1
X 4563589904 /I/
\l’a\\)e \ 5

type

What does this do?

def main() :

x =5
|print (id(x))]
x =x+1

print (id(x))

stack o heap
- | e (e
1
% 4563589904 ,I/
\la\\)eL 5
console

4563589904

type

What does this do?

def main() :
x =5
print (id(x))
[x=x+1 |
print (id (x))

stack heap
ID

f Y f . Y

4563589904

main / int type
1 ref ¢
4563589904 ,I/ ount

X

\|6\°e S5

\ y

console
4563589904

What does this do?

def main() :
x =5
print (id(x))
x =|x + 1 |
print (id (x))

stack - heap
| main ‘y’r int) type
1 ref c
X 4563589904 ,I/ Ount
\l’a\\)e \ 5 y
console

4563589904

What does this do?

def main|() :
x =5
print (id(x))
x =|x + 1 |
print (id(x))

stack o heap
main ‘yr int) type
1 ref
< | 4563589904 ,I/ count
\l’a\\)e \ 5 y
4563589936 int

console 0

4563589904
\l’a\\)e \ 6 y

What does this do?

def main() :

x =5
print (id(x))
[x = x + 1]

print (id(x))

stack o heap
main) 4563589904 A Y type
0 ref
< | 4563589936 \I\ count
\l’a\\)e \ 5 y
4563589936 int

console 1

4563589904
\l’a\\)e \ 6 y

What does this do?

def main() :

x =5
print (id(x))
x =x+1

[Print(id(x))]

stack o heap
main 4563589904 int
0
x | 4563589936 \I\
\l’a\\)e \ 5
4563589936 int
console 1
4563589904 c
4563589936 NN §

é N

main

x‘ 4563589936 ‘

pr—
binky

Y ‘ 234589936 ‘

P—
pinky

z‘ 9993589936 ‘

The stack

" Y% Mo

Each time a function is called,
a new frame of memory is
created.

Each frame has space for all
the local variables declared in
the function, and parameters

Each variable has a reference
which is like a URL

When a function returns, Its
frame Is destroyed.

ID
4563589904

NEN

4563589936

NEN

int

The heap

Where values are stored

Every value has an address
(like a URL address)

Values don’t go away
when functions return

Memory Is recycled when
Its no longer used.

What does this do?

def main() :
x =5
print (id(x))
x =|x + 1 |
print (id (x))

What does this do?

def main() :

x =5
print (id(x))
[x = x + 1)

print (id(x))

When a variable is “assigned”
via binding you are changing Its
reference

You know a variable is being assigned to if it is
on the left hand side of an = sign

What does this do?

def main () :

Stack

main

[x = 5

binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

X

What does this do?

Stack
def main () : main
[x =5 J x [5563936
binky (9)
def binky(y):
pinky (y)
def pinky(z):
print(z)
5563936 (int
1

What does this do?

def main () :
x =5

(binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

5563936

Stack

main

X

5563936

s

int

What does this do?

Stack
def main () : main
X =5 x [5563936
binky (9)
|def binky (y) :J
pinky (y)
def pinky(z):
print(z)
5563936 (int
1

What does this do?

Stack
def main|() : main
x =5 x [5563936
binky (9) . 1
binky
|def binky (y) :J v | 9563936
pinky (y)
def pinky(z):
print(z)
2263936 int)
1
5
9563936 i int <
1
\ 2 y

What does this do?

Stack
def main|() : main
x =5 x [5563936
binky (9) . 1
binky
def binky(y): y | 9563936
[pinky (v) |
def pinky(z):
print(z)
2263936 int)
1
5
9563936 i int <
1
\ 2 y

What does this do?

Stack
def main|() : main
x =5 x [5563936
binky (9) . 1
binky
def binky(y): y | 9563936
pinky (y)
|def Einkx(z)ﬂ
print(z)
2263936 int)
1
5
9563936 i int <
1
\ 2 y

What does this do?

Stack
def main|() : main
X =5 x | 5563936
binky (9) > <
binky
def binky(y): y | 9563936
pinky (y) * _ <
pinky
|def pinky (z) :| z [9563936
print(z)
5563936 int)
1
5
9563936 ¢ int <
2
9

What does this do?

Stack
def main () : main
x = 5 x | 5563936
binky (9) > y
binky
def binky(y): y | 9563936
pinky (y) ’ . *
pinky
def pinky(z): z [9563936
|[print(z) |
5563936 (int N
1
5
> . <
console 9563936 int
9 2
9

What does this do?

def main () :
x =5
binky (9)

def binky(y):

pinky (y)

def pinky(z):

print (z)

console

9

5563936

9563936

Stack

main

X

5563936

binky

y

9563936

pinky

z

9563936

What does this do?

def main () :
x =5
binky (9)

def binky(y):

pinky (y)

i

def pinky(z):

print(z)

console

9

5563936

9563936

Stack

main

X

5563936

binky

y

9563936

s

What does this do?

def main|() :
x =5
binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

console

9

5563936

9563936

Stack

main

X

5563936

s

What does this do?

def main|() :
x =5
binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

console

9

5563936

Stack

main

X

5563936

s

int

What does this do?

def main () :
x =5
binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

console

9

5563936

Stack

s

int

What does this do?

def main () :
x =5
binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

console

9

Stack

What does this do?

def main () :
x =5
binky (9)

def binky(y):

pinky (y)

def pinky(z):

print(z)

console

9

Stack

Whoa!

;.-."’..'..

-

Y

~
O 7 rv
-~ 5 ol
lwcfg'.- -
‘o >
-
.

Bring it!

def main() :

X = [vav, 'b', 'C']
print (x)
update in list (x)
print (x)

update list (x)
print (x)

def update in list(x):

x[0] = 'z
def update list(x):
X = [vmv, lnl, 'O']
if name == ' main ':
main ()

http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html

Learning Goals

1. More practice with classes
2. See how to trace memory

