
Classes + Memory
CS106A, Stanford University

Housekeeping

• Survey about Embedded EthiCS
– https://forms.gle/GB9LzheQaUTfETMaA

– Or, use QR Code → → →

https://forms.gle/GB9LzheQaUTfETMaA

And now… a song about tuples!

Learning Goals

1. More practice with classes
2. See how to trace memory

Review:
classes and objects

class: A template for a new type of variable

Classes are like blueprints

Class Student
(Blueprint for student)

Student instances
(Objects)

Classes define new variable
types

Classes help decompose
your program across files

Classes Can Include Three Things

• Constructor

– Method (function) called when a new object is being created

• Methods

– Functions that you can call on an instance (object) of that class

• Instance variables

– Variables inside each object of that class

– Referred to using self.variable_name

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

• Constructor is called each time we create a new object

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

• Instance variables are stored inside each object

• Each object has its own version of the instance variables

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

• Methods are functions that can be called on a particular object

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

• When authoring a class, self means:

"the instance (aka object) I am currently working with"

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

A new dog is born

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

A new dog is born

yip

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

A new dog is born

yip

woof

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

A new dog is born

yip

woof

yip

.__dict__

• Instance variables in an object are
stored in internal .__dict__ variable

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

A new dog is born

yip

woof

yip

simba {'times_barked': 2, 'breed': 'pomeranian'}

class Dog:

def __init__(self, breed):

print('A new dog is born')

self.times_barked = 0

self.breed = breed

def bark(self):

if self.breed == 'pomeranian':

print('yip')

else:

print('woof')

self.times_barked += 1

from dog import Dog

def main():

simba = Dog('pomeranian')

juno = Dog('great dane')

simba.bark()

juno.bark()

simba.bark()

print('simba', simba.__dict__)

print('juno', juno.__dict__)

dog.py dogworld.py

Classes Review

A new dog is born

A new dog is born

yip

woof

yip

simba {'times_barked': 2, 'breed': 'pomeranian'}

juno {'times_barked': 1, 'breed': 'great dane'}

Coder: Function
Author

Coder: Function
Caller

Uses helper functionsWrites helper functions
others can use

Recall Functions?

Coder: Class
Author

Coder: Class
Client

Uses the new
variable type to solve
problems (often from

main).

Writes the class (often in its
own file), thus defining a

new variable type

Classes also split up the work!

Because they are classy

Class Author: Writes the class, thus defining
a new variable type (often in its own file)

Class Client: Uses the new variable type
to solve problems (often from main).

Next step in writing large programs:
Better understand memory

You are now ready…

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

What does this do?

main

x

heapstack

5
4563589904

4563589904

ID

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589904

4563589904 int

1

ID

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589904

4563589904

ID

int

1

4563589904

console

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589904

4563589904

ID

int

1

4563589904

console

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589904

4563589904

ID

int

1

4563589904

console

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589904

4563589904

ID

int

1

4563589904

console

6

int

0

4563589936

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589936

4563589904

ID

int

0

4563589904

console

6

int

1

4563589936

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

What does this do?

main

x

heapstack

5
4563589936

4563589904

ID

int

0

4563589904

4563589936

console

6

int

1

4563589936

The stack

main

x

binky

y

pinky

z

Each time a function is called,
a new frame of memory is
created.

Each frame has space for all
the local variables declared in
the function, and parameters

Each variable has a reference
which is like a URL

When a function returns, its
frame is destroyed.

4563589936

234589936

9993589936

The heap

Where values are stored

Values don’t go away
when functions return

Memory is recycled when
its no longer used.

Every value has an address
(like a URL address)

5

4563589904

ID

int

0

6

int

1

4563589936

What does this do?

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

When a variable is “used”
you are accessing its value

What does this do?

When a variable is “assigned”
via binding you are changing its
reference

You know a variable is being assigned to if it is

on the left hand side of an = sign

def main():

x = 5

print(id(x))

x = x + 1

print(id(x))

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

1

9563936

binky

y 9563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

1

9563936

binky

y 9563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

1

9563936

binky

y 9563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

2

9563936

binky

y 9563936

pinky

z 9563936

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

2

9563936

binky

y 9563936

pinky

z 9563936

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

2

9563936

binky

y 9563936

pinky

z 9563936

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

1

9563936

binky

y 9563936

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

int

0

9563936

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

main

x

5

int

1

5563936

5563936

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

5

int

0

5563936

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

9

console

def main():

x = 5

binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

What does this do?
Stack

9

console

Whoa!

Bring it!
def main():

x = ['a', 'b', 'c']

print(x)

update_in_list(x)

print(x)

update_list(x)

print(x)

def update_in_list(x):

x[0] = 'z'

def update_list(x):

x = ['m', 'n', 'o']

if __name__ == '__main__':

main()

http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html

Learning Goals

1. More practice with classes
2. See how to trace memory

