—— -

Search Engines
CS106A, Stanford University

Housekeeping

F_ %

|-

* Website for more practice Python problems:

— https://codingbat.com/python

— Built by our own Nick Parlante

https://codingbat.com/python

Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

And maybe some
bonus story time!

Search Engilines

How to Build a Web Search Engine

* Crawling
— Find relevant documents to search over

* Indexing
— Record which terms appear in which documents

e Search
— Determine which documents match user's query

* Ranking

— Sort matching documents by "relevance" to user's query

* Serving
— Infrastructure to get queries and give results

* Interface
— User interface for presenting results to the user

In Assighnment #7

Crawling
— We will provide document collection for you to search

Indexing
— You'll be writing this!

Search
— You'll be writing this!

Ranking

— Nothing fancy required, but great area for extensions

Serving
— Not required, but great area for extensions (more soon)

Interface
— Give you basic text interface, but great area for extensions

Indexing

* Inverted index (generally, just called an "index")

— Similar to index in back of a book
— For each word, you want to know where it is mentioned

 Mapping, where we have: term - list of documents
containing that term
— Term is the generic way we refer to a word, name, number,
etc. that we might want to look up
* Consider the example:

— Term "burrito" appears in the documents "recipes.txt",
"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

— Term "sushi" appears in documents "favorites.txt" and
"Japanese foods.txt"

— Term "samosa" appears in document "appetizers.txt"

Representing an Index in Python

* Consider the example:

— term "burrito" appears in the documents "recipes.txt",
"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

— term "sushi" appears in documents "favorites.txt" and
"Japanese foods.txt"

— term "samosa" appears in document "appetizers.txt"

* |In Python, use a dictionary to represent index

— Map from term (key) to list of documents (value)

index = {
'burrito': ['recipes.txt', 'greatest eats.txt',
'"top 10 foods.txt', 'favorites.txt'],
'sushi': ['favorites.txt', 'Japanese foods.txt'],

'samosa': ['appetizers.txt']

}

Building an Index in Assignment #7

* Given a set of documents
— For each document, parse out all the terms:

* Terms are separated from each other by space (or newline)
* Terms should be converted to lowercase (for consistency)

* Terms need to have punctuation stripped off start/end
>>> raw = '$$j.1lo!"

>>> term = raw.strip(string.punctuation)

>>> term

'j.1lo' 'docl.txt":
 Example: Terms in 'docl.txt": ;"T“;(’;Ngfe 220'000

'*We* ' should be converted to term 'we'
rare' should be converted to term 'are'
'100,000"' should be converted to term '100, 000"

' STRONG! ' should be converted to term 'strong’

'$$' should be ignored. Punctuation by itself is not a term.

Building an Index in Assignment #7

'docl.txt':

We are 100,000
 Example: Terms in 'docl.txt": STRONG! $%

— '*We*' should be converted to term 'we'

— 'are' should be converted to term 'are’

— '100,000"' should be converted to term '100, 000"

— 'STRONG! ' should be converted to term 'strong"

— '$%$' should be ignored. Punctuation by itself is not a term.

e Resulting index (dictionary) in Python would be:

{
'we': ['docl.txt'],
'are': ['docl.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt']
} Note: Python would print the dictionary
all on one line. We just break it up on
multiple lines in our examples for clarity.

Building an Index in Assignment #7

'doc2.txt':

Strong, you are!

* Now, say we indexed 'doc2.txt": --Yoda--

— 'Strong, ' should be converted to term 'strong'
— 'you' should be converted to term 'you'

— 'are!' should be converted to term 'are’

— '--Yoda--"' should be converted to term 'yoda’

* Updating our previous index with this data should give:

{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

A Final Note on Indexing

'‘quotel.txt':

. . . Yoda quote
 Often, files have some information

that we want to keep track of (such

Strong, you are!
--Yoda--

as a title) for later display
— Here, first line of each file contains a title 'quote2.txt':

that we want to keep track of Gandhi's wisdom

— The terms in the title line should still be

. Be the change
indexed like every other line in the file J

that you wish to
* Build a mapping (dictionary) from file |see in the

world.

names to titles (for later display): - _Mahatma Gandhi

{
'quotel.txt': 'Yoda quote’,

'quote2.txt': "Gandhi's wisdom"

Note: in the index of these files,
"gandhi's" would be a term
(with the apostrophe embedded)
} since the apostrophe is not at the
end beginning/end of the term.

Search

Once you have an index, searching is straightforward

— In the user interface, user enters a query

* Note: Terms in query will be separated by spaces and converted to
lowercase. (Can assume no punctuation before/after query terms.)

— For each term in query, we use the index to look up the list
of documents that the term appears in

* This list of documents is called a "posting list"
For one term queries, the posting list from the index
directly provides the results to the query

For multi-term queries, the way you combine posting
lists for each term determines how the search works

Multi-Term Queries

e Can add together the results (uniquely) of all the
posting lists
— This would be comparable to doing a union with sets

— This corresponds to treating the query as a disjunction
 We return any document that contains any of the terms in query
e Logically, it's like using the connective "OR" between query terms

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']

} Posting list:

— Query: "yoda strong"

Multi-Term Queries

e Can add together the results (uniquely) of all the
posting lists
— This would be comparable to doing a union with sets

— This corresponds to treating the query as a disjunction
 We return any document that contains any of the terms in query
e Logically, it's like using the connective "OR" between query terms

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']

} Posting list:

— Query: "yoda strong" ['doc2. txt']

Multi-Term Queries

e Can add together the results (uniquely) of all the
posting lists
— This would be comparable to doing a union with sets

— This corresponds to treating the query as a disjunction
 We return any document that contains any of the terms in query
e Logically, it's like using the connective "OR" between query terms

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']

} Posting list:

— Query: "yoda strong" ['doc2.txt', 'docl.txt']

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],

'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

}
— Query: "are you yoda"

Posting list:

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt' . .
\ Y [] Posting list:

— Query: "are you yoda" ['docl.txt', 'doc2.txt']

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],

'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

| Posting list:

— Query: "are you yoda" ['doc2.txt']

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],

'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

| Posting list:

— Query: "are you yoda" ['doc2.txt']

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],

'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

}
— Query: "we are yoda"

Posting list:

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],

'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

| Posting list:

— Query: "we are yoda" ['docl.txt']

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],

'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

| Posting list:

— Query: "we are yoda" ['docl.txt']

Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

e Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:

'we': ['docl.txt'],

'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

| Posting list:

— Query: "we are yoda" []

Let's take 1t out for a spin:
searchengine.py

Ranking Documents

* |In Assignment #7, you just display the documents that
are considered matches to the query
— You are not ranking them in any particular order
— But, this is an area for cool extensions, so let's chat about it...

e One of the richest research areas in search is how to
rank documents (i.e., sort them by relevance to user)

— Doing this requires that we keep track of more information in
the index (e.g., store lists/tuples rather than just file names)

— Examples of additional information that's useful for ranking:
* Number of times a term appears in a document
* The positions of the terms in each document
 How rare particular terms are in the whole collection of documents
* How "popular" a document is (e.g., analyze link structure on the web)

Measures of Textual Similarity

Classic approach: Documents/query similarity is a
function of term frequency within the document and
across all documents

TF(w) = frequency of term w in a document/query

— Intuition: a word appearing more frequently in a document is
more likely to be related to its “meaning”

IDF(w) = log (N/n,,) + 1
where N = total # documents, n, is # documents containing w

— Intuition: words that appear in many documents (e.g., “the”)
are generally not very informative/contentful terms

TFIDF: contribution of each term is product of these:
TFIDF(w) = TF(w) x IDF(w)

Using TFIDF to Measure Similarity

* Consider each document as a list/vector:
dog compute window ...

Doc.1=[3.2, 0, 1.2,
Doc.2=[0O, 2.1, 5.4, ‘
Doc.3=[O, 1.7, 0,

: cosine
* Lists/vectors are constructed such that

— Each element of list/vector represents a term w,
— Each element of list/vector has value: TFIDF(w,)
— Normalize the vectors to unit length (using Euclidean norm)

 Document similarity to another document or query is measured
using the cosine between the TFIDF vectors of the
documents/queries
— Cosine = vector dot product
— Called "Vector Space Model"

Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

What about that]

bonus story time?!?

Bonus story time:
Google
(...before 1t was Google)

STANFORD COMPUTER FORUM
TWENTY-NINTH ANNUAL MEETING

MARCH 19-20, 1997

Department of Computer Suence

D.-t\'p nnnnn Tnnn p]n r‘cx T ~t AW\LA N =58

1:30-3:00

1:30

2:00

2:30

3:00-3:15

Thursday, March 20, 1997

Parallel Session III-A: Information Retrieval
Professor Rajeev Motwani, Chair
H-P Auditorium

Information Retrieval and the Web
Larry Page Professor Terry Winograd, Advisor

Creating Personalized Yahoo!'s: Automated Hierarchical
Clustering and Classification of Documents
Mehran Sahami Professor Daphne Koller, Advisor

SenseMaker: An Information-Exploration Interface
Michelle Baldonado Professor Terry Winograd, Advisor

Break

Thursday, March 20, 1997

10:30-12:00 Parallel Session II-A: Data Mining

10:40

11:05

11:30

12:00-1:30

Professor Nils Nilsson, Chair
NEC Auditorium

Adaptive Web Page Recommendation

Marko Balabanovic Professor Yoav Shoham, Advisor
Problems in Data Mining
Sergey Brin Professor Hector Garcia-Molina, Advisor

Association Rules . |
Craig Silverstein Professor Rajeev Motwani, Advisor

Lunch
Gates Building, Room 104

8:30-9:00

9:00-10:30

9:30

Wednesday, March 19, 1997

Registration and Continental Breakfast
Gates Building, Basement Lobby

Opening Session
Gates Building, H-P Auditorium

Welcoming Remarks
Carolyn Tajnai, Director, Computer Forum
Professor Yoav Shoham, Annual Meeting Program Chair

Department Greetings
Professor Jean-Claude Latombe, Chairman, Computer Science Department
William F. Miller, Computer Forum Faculty Chair

Keynote Address
Dr. Eric Schmidt, CTO, CEO, Sun Microsystems
Evolution or Revolution? The Future of Network Computing

10:30-11:00 Break

Google's Beginnings

* In mid-1990's, Larry Page and Sergey Brin did research
as part of the Stanford Digital Library project

— Original project was called "BackRub"

e lLarge parts of Google were originally built in Python
— Here's some of that code (it's written in Python 1.4)

class RobotFileParser:

def init (self):
self.rules = {}

def parse(self, lines):
active = []
for line in lines:
blank line terminates current record
if not line[:-1]:
active = []
continue
remove optional comment and strip line
line = string.strip(line[:string.find(line, '#')1])

http://google.stanford.edu

Google!

Search the web using Google!

|
[10resuts =] Google Search | I'm feeling lucky |
Index contains ~25 milllon pages (soon o be much bigger)

About Google!

Stanford Search Linux Search
Get Google! updates monthly!

lyow e-mail Subscnbe | Archive
Copynght ©1997.8 Stanford Universdy

Image courtesy of Google

Google's Index (circa 2004)

Too large to fit in memory for one machine
Split index into pieces, called shards

— Shards are small enough to have several per machine

— Replicate the shards for robustness

Need to still store original documents

— Want to show users “snippets” of query terms in context

— Use same sharding concept to store original documents

Replicate this whole structure within/across data
centers

Google Infrastructure (circa 2004)

Misc. servers

quzry /' Spell checker

" Ad Server
Index servers Doc servers
/=== ===/ - _———Tm— e m N --—=-——— 1
| : : |
: T | | //(2 Iy Lo T Dy | | Dy Dy :
|
| n | | 0 |
: S lo 1, 1, In| 1 LS Do | | Dy Dy, :
| & R =1 . :
) I | O "
c LR :
' |
: l | |li] |2 Iy Lo l Do | | Dy Dy :
|
L __*—Indexshards —__ ! 1 _ +—Docshards — _

Elapsed time: 0.25s, machines involved: 1000+

google.stanford.edu (circa 1997)

Image courtesy of Google

google.com (1999)

Image courtesy of Google

Google Data Center (circa 2000)

Image courtesy of Google

Empty Google Data Center (2001)

Image courtesy of Google

3 Days Later

v

=

Tl
T,
3

¥
&/
Yo

—

%,

()
3,

Image courtesy of Google

A Day 1n the Life of Google

A picture is worth a few hundred million search queries...

hu Aug 14 00:00:00 PDT 2003

Image courtesy of Google

