
Search Engines
CS106A, Stanford University

Housekeeping

• Website for more practice Python problems:

– https://codingbat.com/python

– Built by our own Nick Parlante

https://codingbat.com/python

Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

And maybe some
bonus story time!

Search Engines

How to Build a Web Search Engine

• Crawling
– Find relevant documents to search over

• Indexing
– Record which terms appear in which documents

• Search
– Determine which documents match user's query

• Ranking
– Sort matching documents by "relevance" to user's query

• Serving
– Infrastructure to get queries and give results

• Interface
– User interface for presenting results to the user

In Assignment #7

• Crawling
– We will provide document collection for you to search

• Indexing
– You'll be writing this!

• Search
– You'll be writing this!

• Ranking
– Nothing fancy required, but great area for extensions

• Serving
– Not required, but great area for extensions (more soon)

• Interface
– Give you basic text interface, but great area for extensions

Indexing

• Inverted index (generally, just called an "index")

– Similar to index in back of a book

– For each word, you want to know where it is mentioned

• Mapping, where we have: term → list of documents
containing that term

– Term is the generic way we refer to a word, name, number,
etc. that we might want to look up

• Consider the example:

– Term "burrito" appears in the documents "recipes.txt",
"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

– Term "sushi" appears in documents "favorites.txt" and
"Japanese foods.txt"

– Term "samosa" appears in document "appetizers.txt"

Representing an Index in Python

• Consider the example:

– term "burrito" appears in the documents "recipes.txt",
"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

– term "sushi" appears in documents "favorites.txt" and
"Japanese foods.txt"

– term "samosa" appears in document "appetizers.txt"

• In Python, use a dictionary to represent index

– Map from term (key) to list of documents (value)

index = {

'burrito': ['recipes.txt', 'greatest eats.txt',

'top 10 foods.txt', 'favorites.txt'],

'sushi': ['favorites.txt', 'Japanese foods.txt'],

'samosa': ['appetizers.txt']

}

Building an Index in Assignment #7

• Given a set of documents
– For each document, parse out all the terms:

• Terms are separated from each other by space (or newline)

• Terms should be converted to lowercase (for consistency)

• Terms need to have punctuation stripped off start/end
>>> raw = '$$j.lo!'

>>> term = raw.strip(string.punctuation)

>>> term

'j.lo'

• Example: Terms in 'doc1.txt':
– '*We*' should be converted to term 'we'

– 'are' should be converted to term 'are'

– '100,000' should be converted to term '100,000'

– 'STRONG!' should be converted to term 'strong'

– '$$' should be ignored. Punctuation by itself is not a term.

We are 100,000

STRONG! $$

'doc1.txt':

Building an Index in Assignment #7

• Example: Terms in 'doc1.txt':
– '*We*' should be converted to term 'we'

– 'are' should be converted to term 'are'

– '100,000' should be converted to term '100,000'

– 'STRONG!' should be converted to term 'strong'

– '$$' should be ignored. Punctuation by itself is not a term.

• Resulting index (dictionary) in Python would be:
{

'we': ['doc1.txt'],

'are': ['doc1.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt']

}

We are 100,000

STRONG! $$

'doc1.txt':

Note: Python would print the dictionary
all on one line. We just break it up on
multiple lines in our examples for clarity.

Building an Index in Assignment #7

• Now, say we indexed 'doc2.txt':
– 'Strong,' should be converted to term 'strong'

– 'you' should be converted to term 'you'

– 'are!' should be converted to term 'are'

– '--Yoda--' should be converted to term 'yoda'

• Updating our previous index with this data should give:
{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Strong, you are!

--Yoda--

'doc2.txt':

A Final Note on Indexing

• Often, files have some information
that we want to keep track of (such
as a title) for later display
– Here, first line of each file contains a title

that we want to keep track of

– The terms in the title line should still be
indexed like every other line in the file

• Build a mapping (dictionary) from file
names to titles (for later display):

{

'quote1.txt': 'Yoda quote',

'quote2.txt': "Gandhi's wisdom"

}

Yoda quote

Strong, you are!

--Yoda--

'quote1.txt':

Gandhi's wisdom

Be the change

that you wish to

see in the

world.

--Mahatma Gandhi

'quote2.txt':

Note: in the index of these files,
"gandhi's" would be a term
(with the apostrophe embedded)
since the apostrophe is not at the
end beginning/end of the term.

Search

• Once you have an index, searching is straightforward

– In the user interface, user enters a query
• Note: Terms in query will be separated by spaces and converted to

lowercase. (Can assume no punctuation before/after query terms.)

– For each term in query, we use the index to look up the list
of documents that the term appears in
• This list of documents is called a "posting list"

• For one term queries, the posting list from the index
directly provides the results to the query

• For multi-term queries, the way you combine posting
lists for each term determines how the search works

Multi-Term Queries

• Can add together the results (uniquely) of all the
posting lists

– This would be comparable to doing a union with sets

– This corresponds to treating the query as a disjunction
• We return any document that contains any of the terms in query

• Logically, it's like using the connective "OR" between query terms

– Recall index:

– Query: "yoda strong"

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

} Posting list:

Multi-Term Queries

• Can add together the results (uniquely) of all the
posting lists

– This would be comparable to doing a union with sets

– This corresponds to treating the query as a disjunction
• We return any document that contains any of the terms in query

• Logically, it's like using the connective "OR" between query terms

– Recall index:

– Query: "yoda strong"

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

['doc2.txt']

Posting list:

Multi-Term Queries

• Can add together the results (uniquely) of all the
posting lists

– This would be comparable to doing a union with sets

– This corresponds to treating the query as a disjunction
• We return any document that contains any of the terms in query

• Logically, it's like using the connective "OR" between query terms

– Recall index:

– Query: "yoda strong"

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

['doc2.txt', 'doc1.txt']

Posting list:

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "are you yoda"

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "are you yoda" ['doc1.txt', 'doc2.txt']

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "are you yoda" ['doc2.txt']

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "are you yoda" ['doc2.txt']

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "we are yoda"

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "we are yoda" ['doc1.txt']

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "we are yoda" ['doc1.txt']

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets

– This corresponds to treating the query as a conjunction
• We return documents that contain every term in query

• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7

– Recall index:

– Query: "we are yoda" []

Posting list:

{

'we': ['doc1.txt'],

'are': ['doc1.txt', 'doc2.txt'],

'100,000': ['doc1.txt'],

'strong': ['doc1.txt', 'doc2.txt'],

'you': ['doc2.txt'],

'yoda': ['doc2.txt']

}

Let's take it out for a spin:

searchengine.py

Ranking Documents

• In Assignment #7, you just display the documents that
are considered matches to the query

– You are not ranking them in any particular order

– But, this is an area for cool extensions, so let's chat about it…

• One of the richest research areas in search is how to
rank documents (i.e., sort them by relevance to user)

– Doing this requires that we keep track of more information in
the index (e.g., store lists/tuples rather than just file names)

– Examples of additional information that's useful for ranking:
• Number of times a term appears in a document

• The positions of the terms in each document

• How rare particular terms are in the whole collection of documents

• How "popular" a document is (e.g., analyze link structure on the web)

Measures of Textual Similarity

• Classic approach: Documents/query similarity is a
function of term frequency within the document and
across all documents

• TF(w) = frequency of term w in a document/query

– Intuition: a word appearing more frequently in a document is
more likely to be related to its “meaning”

• IDF(w) = log (N/nw) + 1

where N = total # documents, nw is # documents containing w

– Intuition: words that appear in many documents (e.g., “the”)
are generally not very informative/contentful terms

• TFIDF: contribution of each term is product of these:

TFIDF(w) = TF(w) x IDF(w)

Using TFIDF to Measure Similarity

• Consider each document as a list/vector:
dog compute window ...

Doc. 1 = [3.2, 0, 1.2, ...]

Doc. 2 = [0, 2.1, 5.4, ...]

Doc. 3 = [0, 1.7, 0, ...]

• Lists/vectors are constructed such that
– Each element of list/vector represents a term wi

– Each element of list/vector has value: TFIDF(wi)

– Normalize the vectors to unit length (using Euclidean norm)

• Document similarity to another document or query is measured
using the cosine between the TFIDF vectors of the
documents/queries
– Cosine = vector dot product

– Called "Vector Space Model"

cosine

Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

What about that
bonus story time?!?

Bonus story time:

Google

(...before it was Google)

Google's Beginnings

• In mid-1990's, Larry Page and Sergey Brin did research
as part of the Stanford Digital Library project

– Original project was called "BackRub"

• Large parts of Google were originally built in Python
– Here's some of that code (it's written in Python 1.4)

class RobotFileParser:

def __init__(self):

self.rules = {}

def parse(self, lines):

active = []

for line in lines:

blank line terminates current record

if not line[:-1]:

active = []

continue

remove optional comment and strip line

line = string.strip(line[:string.find(line, '#')])

...

http://google.stanford.edu

Image courtesy of Google

Google's Index (circa 2004)

• Too large to fit in memory for one machine

• Split index into pieces, called shards

– Shards are small enough to have several per machine

– Replicate the shards for robustness

• Need to still store original documents

– Want to show users “snippets” of query terms in context

– Use same sharding concept to store original documents

• Replicate this whole structure within/across data
centers

Google Web Server

Spell checker

Ad Server

I0 I1 I2 IN

I0 I1 I2 IN

I0 I1 I2 IN

R
e
p
lic

a
s …

…

Index shards

D0 D1 DM

D0 D1 DM

D0 D1 DM

R
e
p
lic

a
s …

…
Doc shards

query
Misc. servers

Index servers Doc servers

Elapsed time: 0.25s, machines involved: 1000+

Google Infrastructure (circa 2004)

google.stanford.edu (circa 1997)

Image courtesy of Google

google.com (1999)

Image courtesy of Google

Google Data Center (circa 2000)

Image courtesy of Google

Empty Google Data Center (2001)

Image courtesy of Google

3 Days Later…

Image courtesy of Google

A picture is worth a few hundred million search queries…

Image courtesy of Google

A Day in the Life of Google

