Welcome to CS106A

We are going to have fun!

Stanford | ENGINEERING

Computer Science

Lecturer: Frankie Cerkvenik

- Stanford undergrad in CS
(systems) and MS in CS
(Computer and Network
Security)

- Interests: CS Education and
the future of safety on the
internet

- From Minnesota, | love
canoeing and fishing and
hockey :)

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Head TA: Ecy King

Stanford SymSys undergrad
(Human-Centered Al)

currently a CS coterm (HCI)!

born in Scotland; raised in
Fresno/Clovis, CA; family
from Sierra Leone

Interests: Educational
Empowerment, Fractal
Gridding, psychology,
doodling, music, writing,
racquet sports

Stanford | ENGINEERING

Frankie Cerkvenik, CS106A, 2023 Computer Science

Sectlon Leaders

5
|

-Frankie Kaitlin Kathleen

Matthew

Peter Robbie Ryan Sam Sanjaye Sidhika Tommy

*these are SLs of years past...spot frankie!

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Course Mechanics

What you need to do

Lecture
- Just show up!
- Tues, Thurs, Fri 1:30-245 in SkillAud
Optional Weekly Review Sessions (starting next week)
- Wednesdays 1:30-2:45 in SkillAud
Section
- Weekly 50-min section with a section leader
- Sections signups on class webpage not Axess
- Signups close today at 5 and start this week
Assignments
- 6 assignments (about 1/wk) throughout the quarter
Exams
- Midterm 7/26 in the afternoon/evening
- Final exam 8/18 at 3:30pm

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Sections and IGs

Lectures go fast! We don’t expect you to retain all of it
Sections are an opportunity to go over problems with a
section leader

Extra section problems are given for you to go over on
your own

IGs = Interactive Grading sessions: you will meet with
your section leader after most assighments to go over
your code!

Stanford | ENGINEERING

Computer Science

Grading Breakdown

6 programming assignments (65%)
- Assignments turned in on time receive a 2% on time
bonus
- After the due date, each assignment will have a
full-credit "grace period" of 24 hours unless
documented otherwise on the assignment.
- Contact Frankie and Ecy if you need to arrange extra
time on homework for extenuating circumstances
Midterm exam (10%)
Final Exam (15%)
Section and IG attendance and participation (10%)

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

+
+

+

SHE<E<

Assignment Grading

A submission so good it “makes you weep”
Exceeds requirements (and has great style)

Satisfies all requirements, with good functionality
and style

Meets the requirements, but with small problems
Has some somewhat serious problems
Is worse than that, but shows real effort

Better than nothing

Stanford | ENGINEERING

Computer Science

Office Hours

Frankie’s office hours - Fridays 3 - 4:30 in Durand
- Get conceptual help and talk about assignments,
lecture topics, or anything else on your mind
Ecy’s office hours - Tuesdays 3 - 4:30 in Durand
- Group office hours about assignments, concepts, and
life
LAIR
- In Durand 353 Thurs-Sun 5-9pm starting today,
schedule posted on website
- Get conceptual and debugging help from section
leaders!
Frankie and Ecy’s tea time - after lecture on Th outside
- Cometalk to us about anything outside of CS106A!

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Ed Discussion Forum

- Anonline discussion forum for asking questions
- Greatfor:

Clarifying questions about lecture or section
problems

Clarifying or conceptual homework questions
Logistical questions

Conceptual or what if... questions

- Medium good for:

Debugging questions
Please do not post code publicly!

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Exams

- Midterm 7/26 in the afternoon/evening
- If you have an immovable academic conflict, email
Frankie before Friday to arrange an alternate time
- If you emailed before the first day of class, email
again!
- Final 8/18 at 3:30pm-6:30pm: no alternate exam
- Please send OAE letters to Frankie by Friday

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

What is CS106A?

What is Computer Science?

“Computer science is no more about computers than
astronomy is about telescopes, biology is about
microscopes or chemistry is about beakers and test tubes.
Science is not about tools, it is about how we use them and
what we find out when we do.”

— Michael Fellows and lan Parberry

“Instead of imagining that our main task is to instruct a
computer what to to, let us concentrate rather on explaining
to human beings what we want a computer to do.”

— Don Knuth

Stanford | ENGINEERING

Computer Science

CS106A learning goals

1. Learn about what computers can do
- Computers are not magic boxes! They are
problem-solvers!
- They can solve specific problems using a specific set
of instructions (code)

Stanford | ENGINEERING

Computer Science

CS106A learning goals

1. Learn about what computers can do
- Computers are not magic boxes! They are
problem-solvers!
- They can solve specific problems using a specific set
of instructions (code)
2. Learn how to use computers to solve problems
- Explore fundamental techniques in computer
programming.
- Develop good software engineering style.
- Gain familiarity with the Python programming
language.

Stanford | ENGINEERING

Computer Science

CS106A learning goals

1. Learn about what computers can do
- Computers are not magic boxes! They are
problem-solvers!
- They can solve specific problems using a specific set
of instructions (code)
2. Learn how to use computers to solve problems
- Explore fundamental techniques in computer
programming.
- Develop good software engineering style.
- Gain familiarity with the Python programming
language.
3. Frankie’s agenda: get you to love it enough to keep
going!
Stanford | ENGINEERING

Computer Science

CS106A Topics

- Image processing

Stanford | ENGINEERING

Computer Science

CS106A Topics

- Image processing
- Animation and games

— Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

CS106A Topics

- Image processing
- Animation and games
- Text-based problems (ciphers and language processing)

plaintext ciphertext
Secret cookie encrypt cmajuEr5@ki9c04x2
recipe: 2 cups WdHyV$céeg67v3dcic
flour, 4 cups v2nTTjacmahdCasej
Buttexr,; ss» decrypt T cxmase...

key: Bananas

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

CS106A Topics

Image processing

Animation and games

Text-based problems (ciphers and language processing)
Data Processing and analytics

Q (o] Bias Bars

Word To Plot: | class|

11329

9711 1

8092 1

64744

4855 1

3237 1+

1618 1+

[
Low Reviews Medium Reviews High Reviews

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

[V

CS106A Topics

- Image processing

- Animation and games

- Text-based problems (ciphers and language processing)
- Data Processing and analytics

- Sneak peek at how the internet works!

The sky is the limit!

Stanford | ENGINEERING

Computer Science

Announcements

Section signups are out on the website and will be due
tonight at 5pm

Assignment 0 (not graded) is released and due this
Friday

Assignment 1 will be released Wednesday and is due
next Friday

If you would like to switch to 106B, try to decide this
week, as both classes have assignments due next Friday.

Stanford | ENGINEERING

Computer Science

Let’s dive in!

Code looks weird at first
Computers solve very specific problems very well

And are otherwise very bad at solving problems

Particularly, computers need their instructions in a very
specific format (code)

We need to start with a bunch of weird and intimidating
syntax rules and definitions

There are many but they are all very simple

Stanford | ENGINEERING

Computer Science

Definitions

- Program: A collection of code for a computer to run,
which may take in specific inputs like a file name or a
number

- Function: A logical unit of code that may be used and
reused in a program

Computer programs are made up of different functions
Like organisms are made of different types of cells

Stanford | ENGINEERING

Computer Science

Python Syntax

- A python program with python functions would be
written in a file named something like “example.py”

example.py file: Program

def functionl(x, y): .

some code goes here} Function
def function2():

a different piece of code here
def main|() :

main functions are usually where

"the big picture" of the program is

Stanford | ENGINEERING

Computer Science

Python Syntax

example.py file:

Lines starting with # are comments and ignored by
the computer
def functionl () :
Underneath def function name(): is the code for
what should happen when the function is used

This code won’t run until the function is called

def main|() :
functionl () # functions are "called" like this!

The main function is usually where "the big
picture" of the program is - more on that later

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Bit and the Experimental Server

We will learn more about files on our computer and the
main function soon

To get started, we will write and run code on our
experimental server (thanks Nick Parlante!)

Our programs will focus on a little robot named Bit

Stanford | ENGINEERING

Computer Science

https://wopr-service-qbrbcbuzwa-uw.a.run.app/

Stanford | ENGINEERING
° Frankie Cerkvenik, CS106A, 2023 Computer Science

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/bit1

bit1

Instructions

[Case-1 function do_bit1('bit1-1.world') v | [Run]

[Play H Stop H Step | | Back | © Steps

Auto Play O End State Diff | More Controls v |

def do_bitl(filename):

Code

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

bit1
This code is complete - run it to see how it works. Bit starts facing the right

side of the world. The square in front of bit and the square below that are
clear. Move bit forward and paint that square blue. Then paint the square

below that green.

| Case-1 function do_bit1('bit1-1.world') | Run] h

[Play H Stop H Step H Back | © Steps

Auto Play O End State Diff | More Controls v |

def do_bitl(filename):

Code

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

What happened?

bit1

This code is complete - run it to see how it works. Bit starts facing the right
side of the world. The square in front of bit and the square below that are
clear. Move bit forward and paint that square blue. Then paint the square

below that green.

[Case-1 function do_bit1 (bit1-1.world’) - [Run]
[Play H Stop H Step } [Back] — Steps

Auto Play O End State Diff | More Controls « |

def do_bitl(filename):
bit - Bit(filename) V\ .
bit.move()
bit.paint('blue') Ran thls COdeooo
bit.rightQ
bit.move()
bit.paint('green')

Case-1: 1 Correct ¢ 1c

Case-1

:

...To make bit do this!

Stanford | ENGINEERING

Frankie Cerkvenik, CS106A, 2023 Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move ()
bit.paint('blue')
bit.right ()
bit.move ()
bit.paint('green')

Stanford | ENGINEERING

Computer Science

bit1
This code is complete - run it to see how it works. Bit starts facing the right

side of the world. The square in front of bit and the square below that are
clear. Move bit forward and paint that square blue. Then paint the square

below that green.
' Case-1 function do_bit1('bit1-1.world") v] [Run]
[Play H Stop H Step H Back] ® Steps

O Auto Play O End State Diff | More Controls ~ |

def do_bitl(filename):
bit = Bit(filename)

Case-1: 1 Correct ¢ 1c

Uncheck Auto Play See how Bit’s world

starts before running
more code!

Stanford | ENGINEERING

Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move ()
bit.paint('blue')
bit.right ()
bit.move ()
bit.paint('green')

Case-1

Stanford | ENGINEERING

Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move()# Step forward one square
bit.paint('blue')
bit.right ()
bit.move ()
bit.paint('green')

Case-1

Stanford | ENGINEERING

Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move () # Step forward one square
bit.paint('blue')# Paint current square blue
bit.right ()
bit.move ()
bit.paint('green')

Case-1

Stanford | ENGINEERING

Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move () # Step forward one square
bit.paint('blue')# Paint current square blue
bit.right()# Turn 90 degrees to the right
bit.move ()
bit.paint('green')

Case-1

Stanford | ENGINEERING

Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move () # Step forward one square
bit.paint('blue')# Paint current square blue
bit.right()# Turn 90 degrees to the right
bit.move ()# Step forward one square
bit.paint('green')

Case-1

Stanford | ENGINEERING

Computer Science

Code line by line

def do bitl (filename):
bit = Bit(filename) # Set up world
bit.move () # Step forward one square
bit.paint('blue')# Paint current square blue
bit.right()# Turn 90 degrees to the right
bit.move ()# Step forward one square
bit.paint('green')# Paint current square green

Case-1

Stanford | ENGINEERING

Computer Science

Coding with Bit step by step

Read the instructions

Uncheck “Auto Play” and Run - see how Bit is positioned
and what Bit’s world looks like

. Oneline at a time, tell Bit exactly what to do

Hit Run again and see if you got it right!

Repeat steps 3-4 until you are happy :)

Stanford | ENGINEERING

Computer Science

Bit knows how to do 4 things

move ()
Bit will take one step in the direction Bit is facing
left ()
Bit will turn 90 degrees left
right ()
Bit will turn 90 degrees right
palint (color)
Bit will paint its current position color
Options for colorare ‘red’, ‘green’, ‘blue’

Stanford | ENGINEERING

Computer Science

Bit knows how to do 4 things

- move ()
Bit will take one step in the direction Bit is facing
- left ()
Bit will turn 90 degrees left
- right ()
Bit will turn 90 degrees right
- paint (color)
Bit will paint its current position color
Options for colorare ‘red’, ‘green’, ‘blue’

Only bit knows these instructions, so we need to say
bit.move (), notjust move ()

Stanford | ENGINEERING

Computer Science

do bit2

(if time)

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/bit2

Coding with Bit step by step revisited

1. Read theinstructions

2. Uncheck “Auto Play” and Run - see how Bit is positioned
and what Bit’s world looks like

3. One line at a time, tell Bit exactly what to do
This can be very tedious :/

4. HitRun again and see if you got it right!

5. Repeat steps 3-4 until you are happy :)

Stanford | ENGINEERING

Computer Science

Painting a row

Instructions: With Bit starting in the upper left corner facing
right, paint the entire first row green

8N\ N\\\

Stanford | ENGINEERING

Computer Science

One solution...

Instructions: With Bit starting in the upper left corner, paint

the entire first row green

def do row(filename) :

bit

bit.

bit

bit

bit

bit

.move ()
bit.
.move ()
bit.
.move ()
bit.
.move ()
bit.

= Bit(filename)
paint ('green’')

paint ('green')
paint ('green')

paint ('green')

paint('green’')

Stanford | ENGINEERING

Computer Science

Does it work on all maps?

Instructions: With Bit starting in the upper left corner, paint
the entire first row green

def do row(filename) : EE
bit = Bit(filename)
bit.paint('green')
bit.move ()
bit.paint('green')
bit.move ()
bit.paint('green')
bit.move ()
bit.paint('green')
bit.move ()
bit.paint('green') Stanford | ENGINEERING

Computer Science

How easy it is to change a just little?

Instructions: With Bit starting in the upper left corner, paint
the entire first row red

def do row(filename) :

bit

bit.
bit.
bit.
bit.
bit.
bit.
bit.
bit.
bit.

= Bit(filename)
paint ('green')
move ()
paint ('green')
move ()
paint ('green')
move ()
paint ('green')
move ()
paint ('green')

8N\ N\\\

How many lines of code need
to change?

Stanford | ENGINEERING

Computer Science

Introducing the while loop

We can run certain lines of code over and over while some
condition is true

def do row(filename):
bit = Bit(filename)
while {#some condition:
all indented lines run
while the condition is True
these lines out here
only run once
(after condition becomes False)

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Introducing the while loop

We can run certain lines of code over and over while some
condition is true

def do row(filename) :

bit

bit.

bit

bit

bit

bit

= Bit(filename)
paint ('green')

.move ()
bit.

paint ('green')

.move ()
bit.

paint ('green')

.move ()
bit.

paint ('green')

.move ()
bit.

paint('green’')

=)

def do row(filename) :
bit = Bit(filename)
while #something:
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Now we just need syntax to ask if Bit is blocked

def do row(filename) :
bit = Bit(filename)
while #Bit is not blocked:
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Questions Bit can ask

front clear ()

returns True or False if the square Bit is facing is
blocked

left clear ()

returns True or False if the square to Bit’s left is
blocked

right clear ()
returns True or False if the square to Bit’s right is
blocked

get color ()

returns ‘green’, ‘red’, ‘blue’ or None for the
color of the square Bit is currently on

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Let’s run this and see if it worked!

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

1st loop

def do row(filename) :
bit = Bit(filename)
while bit.front clear() :# returns True!
bit.paint('green')
bit.move () @

Stanford | ENGINEERING

Computer Science

Introducing the while loop

1st loop iteration

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move () @

Stanford | ENGINEERING

Computer Science

Introducing the while loop

1st loop iteration

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

2nd loop iteration!

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

End of 2nd loop iteration!

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

End of 3rd loop iteration!

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

End of 4th loop iteration!

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Beginning of 5th loop iteration?

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Beginning of 5th loop iteration?

def do row(filename) :
bit = Bit(filename)
while bit.front clear(): #returns False
bit.paint('green')
bit.move () @

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Beginning of 5th loop?

def do row(filename) :
bit = Bit(filename)
while bit.front clear(): #returns False
bit.paint('green')
bit.move ()
skip loop code, done @

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Didn’t paint last square :(How to fix the bug?

def do row(filename) :
bit = Bit(filename)
while bit.front clear(): #returns False
bit.paint('green')
bit.move ()
skip loop code, done @

Stanford | ENGINEERING

Computer Science

Introducing the while loop

Didn’t paint last square :(How to fix the bug?

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()

paint last square @
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Does it work on all maps?

Instructions: With Bit starting in the upper left corner, paint
the entire first row green

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()
paint last square
bit.paint('green')

g

& @

Stanford | ENGINEERING

Computer Science

How easy it is to change a just little?

Instructions: With Bit starting in the upper left corner, paint
the entire first row red

def do row(filename) :
bit = Bit(filename)
while bit.front clear():
bit.paint('green')
bit.move ()
paint last square
bit.paint('green')

How many lines of code
need to change?

Stanford | ENGINEERING

Computer Science

Recap: While Loop

while #condition:
code that loops
code that doesn’t loop

1. Firstthe condition is checked (it should be True or
False, more on that later)

2. Ifthe conditionis True, the “code that loops” runs, then
back to step 1.

3. Ifthe conditionis False, the “code doesn’t loop” runs,
and the looping process is over

Stanford | ENGINEERING

Computer Science

Conditions

- Conditions are statements that evaluate to either True
OorFalse

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Conditions

- Conditions are statements that evaluate to either True
OorFalse

while #icondition:
code that loops

while bit.front clear():
#if bit.front clear returns True, loop

while True:
Always loops forever!
maybe a bad idea.. don’t do this :)

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Conditions

- Conditions are statements that evaluate to either True

Oor False
- Thestatement left == rightis True if leftis equal
to right and False otherwise

while bit.get color() == 'green':
loop if bit is standing on a green

while bit.front clear() == False:
#if bit.front clear returns True, loop
#Redundant! Don’t need ‘== True’

Stanford | ENGINEERING

Computer Science

Conditions

- Conditions are statements that evaluate to either True

orFalse

- Thestatement left == rightis True if leftis equal
to right and False otherwise

- Adding the word not in front of a conditions changes it
from False to True orfrom True to False

while not bit.get color() == 'green':
loop if bit is standing on anything
except a green

while not bit.front clear():
#loop if bit.front clear returns False
#AKA loop while bit is blocked!

Stanford | ENGINEERING

Computer Science

Unblock Bit

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock (filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

Stanford | ENGINEERING

Computer Science

Unblock Bit

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock (filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

Stanford | ENGINEERING

Computer Science

Unblock Bit

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock (filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

def unblock (filename) :
bit = Bit(filename)

Stanford | ENGINEERING

Computer Science

Unblock Bit

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock (filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

def unblock (filename) :
bit = Bit(filename)
while not bit.front clear():

Stanford | ENGINEERING

Computer Science

Unblock Bit

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock (filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

def unblock (filename) :
bit = Bit(filename)
while not bit.front clear():
bit.right()

Stanford | ENGINEERING

Computer Science

Unblock Bit

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock (filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

def unblock (filename) :
bit = Bit(filename)
while not bit.front clear():
bit.right()
bit.front clear must have been True!
bit.move ()

Stanford | ENGINEERING

Computer Science

Syntax Errors
AKA typos!

Humans can usually understand code that has typos, but
computers are not as smart as humans:)

Python catches syntax errors either:
- before runtime: before any code runs - also known
as a compile error. Ex: biterrl

- during runtime: while the code is running - also
known as a runtime error. Ex: biterr4

Stanford | ENGINEERING

Computer Science

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr1
https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr4

Fixing Syntax Errors Step by Step

Run your code!
. Oh no! My code didn’t run all the way through :(
Read the error message, pay attention to the line

number

. Go to that line number, fix the issue

. Trystep 1again

Stanford | ENGINEERING

Computer Science

Syntax Errors
- AKA typos!

- Humans can usually understand code that has typos, but
computers are not as smart as humans:)

- Python catches syntax errors either:
- before runtime: before any code runs - also known
as a compile error. Ex: biterrl

- during runtime: while the code is running - also
known as a runtime error. Ex: biterr4

Syntax errors are not the same as bugs! Bugs happen
when your code can run all the way through, but it
doesn’t do what you wanted it to

Stanford | ENGINEERING

Computer Science

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr1
https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr4

Recap

- Welcome to 106A!

- Remember to fill out that section signup form ASAP

- Bitisarobotthat canmove,turn left and right, and
palint

- We can make certain lines of code run over and over with
while loops

- while loopsrequire a condition that tells them if it’s
okay to keep looping

- Conditions are True/False statements

- Syntax errors happen! Luckily, Python tells us how to fix
them

Stanford | ENGINEERING

Computer Science

See you next time!

Stanford | ENGINEERING
& Frankie Cerkvenik, CS106A, 2023 Computer Science

