
Frankie Cerkvenik, CS106A, 2023

Welcome to CS106A
We are going to have fun!

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lecturer: Frankie Cerkvenik
- Stanford undergrad in CS

(systems) and MS in CS
(Computer and Network
Security)

- Interests: CS Education and
the future of safety on the
internet

- From Minnesota, I love
canoeing and fishing and
hockey :)

2

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Head TA: Ecy King
- Stanford SymSys undergrad

(Human-Centered AI)

- currently a CS coterm (HCI)!

- born in Scotland; raised in
Fresno/Clovis, CA; family
from Sierra Leone

- Interests: Educational
Empowerment, Fractal
Gridding, psychology,
doodling, music, writing,
racquet sports

3

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Section Leaders

*these are SLs of years past…spot frankie!

4

Course Mechanics

5

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

What you need to do
- Lecture

- Just show up!
- Tues, Thurs, Fri 1:30-245 in SkillAud

- Optional Weekly Review Sessions (starting next week)
- Wednesdays 1:30-2:45 in SkillAud

- Section
- Weekly 50-min section with a section leader
- Sections signups on class webpage not Axess
- Signups close today at 5 and start this week

- Assignments
- 6 assignments (about 1/wk) throughout the quarter

- Exams
- Midterm 7/26 in the afternoon/evening
- Final exam 8/18 at 3:30pm

6

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Lectures go fast! We donʼt expect you to retain all of it
- Sections are an opportunity to go over problems with a

section leader
- Extra section problems are given for you to go over on

your own
- IGs = Interactive Grading sessions: you will meet with

your section leader after most assignments to go over
your code!

7

Sections and IGs

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Grading Breakdown
- 6 programming assignments (65%)

- Assignments turned in on time receive a 2% on time
bonus

- After the due date, each assignment will have a
full-credit "grace period" of 24 hours unless
documented otherwise on the assignment.

- Contact Frankie and Ecy if you need to arrange extra
time on homework for extenuating circumstances

- Midterm exam (10%)
- Final Exam (15%)
- Section and IG attendance and participation (10%)

8

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 20239

Assignment Grading
++ A submission so good it “makes you weep”

+ Exceeds requirements (and has great style)

✅
+

Satisfies all requirements, with good functionality
and style

✅ Meets the requirements, but with small problems

✅- Has some somewhat serious problems

- Is worse than that, but shows real effort

-- Better than nothing

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Office Hours
- Frankieʼs office hours - Fridays 3 - 4:30 in Durand

- Get conceptual help and talk about assignments,
lecture topics, or anything else on your mind

- Ecyʼs office hours - Tuesdays 3 - 4:30 in Durand
- Group office hours about assignments, concepts, and

life
- LAIR

- In Durand 353 Thurs-Sun 5-9pm starting today,
schedule posted on website

- Get conceptual and debugging help from section
leaders!

- Frankie and Ecyʼs tea time - after lecture on Th outside
- Come talk to us about anything outside of CS106A!

10

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- An online discussion forum for asking questions
- Great for:

- Clarifying questions about lecture or section
problems

- Clarifying or conceptual homework questions
- Logistical questions
- Conceptual or what if… questions

- Medium good for:
- Debugging questions
- Please do not post code publicly!

11

Ed Discussion Forum

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Exams
- Midterm 7/26 in the afternoon/evening

- If you have an immovable academic conflict, email
Frankie before Friday to arrange an alternate time

- If you emailed before the first day of class, email
again!

- Final 8/18 at 3:30pm-6:30pm: no alternate exam
- Please send OAE letters to Frankie by Friday

12

What is CS106A?

13

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

“Computer science is no more about computers than
astronomy is about telescopes, biology is about
microscopes or chemistry is about beakers and test tubes.
Science is not about tools, it is about how we use them and
what we find out when we do.”

— Michael Fellows and Ian Parberry

“Instead of imagining that our main task is to instruct a
computer what to to, let us concentrate rather on explaining
to human beings what we want a computer to do.”

— Don Knuth

14

What is Computer Science?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Learn about what computers can do
- Computers are not magic boxes! They are

problem-solvers!
- They can solve specific problems using a specific set

of instructions (code)

15

CS106A learning goals

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Learn about what computers can do
- Computers are not magic boxes! They are

problem-solvers!
- They can solve specific problems using a specific set

of instructions (code)
2. Learn how to use computers to solve problems

- Explore fundamental techniques in computer
programming.

- Develop good software engineering style.
- Gain familiarity with the Python programming

language.

16

CS106A learning goals

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Learn about what computers can do
- Computers are not magic boxes! They are

problem-solvers!
- They can solve specific problems using a specific set

of instructions (code)
2. Learn how to use computers to solve problems

- Explore fundamental techniques in computer
programming.

- Develop good software engineering style.
- Gain familiarity with the Python programming

language.
3. Frankieʼs agenda: get you to love it enough to keep

going!

17

CS106A learning goals

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Image processing

18

CS106A Topics

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Image processing
- Animation and games

19

CS106A Topics

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Image processing
- Animation and games
- Text-based problems (ciphers and language processing)

20

CS106A Topics

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Image processing
- Animation and games
- Text-based problems (ciphers and language processing)
- Data Processing and analytics

21

CS106A Topics

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Image processing
- Animation and games
- Text-based problems (ciphers and language processing)
- Data Processing and analytics
- Sneak peek at how the internet works!

The sky is the limit!

22

CS106A Topics

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Section signups are out on the website and will be due
tonight at 5pm

- Assignment 0 (not graded) is released and due this
Friday

- Assignment 1 will be released Wednesday and is due
next Friday

- If you would like to switch to 106B, try to decide this
week, as both classes have assignments due next Friday.

23

Announcements

Letʼs dive in!

24

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Computers solve very specific problems very well

- And are otherwise very bad at solving problems

- Particularly, computers need their instructions in a very
specific format (code)

- We need to start with a bunch of weird and intimidating
syntax rules and definitions

- There are many but they are all very simple

25

Code looks weird at first

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Program: A collection of code for a computer to run,
which may take in specific inputs like a file name or a
number

- Function: A logical unit of code that may be used and
reused in a program

Computer programs are made up of different functions
Like organisms are made of different types of cells

26

Definitions

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- A python program with python functions would be
written in a file named something like “example.py”

example.py file:

27

Python Syntax

def function1(x, y):
 # some code goes here
def function2():
 # a different piece of code here
def main():

main functions are usually where
"the big picture" of the program is

Program

}
Function

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

example.py file:

28

Python Syntax

Lines starting with # are comments and ignored by
the computer
def function1():
 # Underneath def function_name(): is the code for

what should happen when the function is used

 # This code won’t run until the function is called

def main():
function1() # functions are "called" like this!

 # The main function is usually where "the big
picture" of the program is - more on that later

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We will learn more about files on our computer and the
main function soon

- To get started, we will write and run code on our
experimental server (thanks Nick Parlante!)

- Our programs will focus on a little robot named Bit

29

Bit and the Experimental Server

https://wopr-service-qbrbcbuzwa-uw.a.run.app/

Frankie Cerkvenik, CS106A, 2023

do_bit1

30

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/bit1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202331

Instructions

Code

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202332

Code

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202333

What happened?

Ran this code…
…To make bit do this!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202334

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()
 bit.paint('blue')
 bit.right()
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202335

Uncheck Auto Play See how Bitʼs world
starts before running
more code!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202336

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()
 bit.paint('blue')
 bit.right()
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202337

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()# Step forward one square
 bit.paint('blue')
 bit.right()
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202338

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()# Step forward one square
 bit.paint('blue')# Paint current square blue
 bit.right()
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202339

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()# Step forward one square
 bit.paint('blue')# Paint current square blue
 bit.right()# Turn 90 degrees to the right
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202340

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()# Step forward one square
 bit.paint('blue')# Paint current square blue
 bit.right()# Turn 90 degrees to the right
 bit.move()# Step forward one square
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202341

Code line by line
def do_bit1(filename):
 bit = Bit(filename) # Set up world
 bit.move()# Step forward one square
 bit.paint('blue')# Paint current square blue
 bit.right()# Turn 90 degrees to the right
 bit.move()# Step forward one square
 bit.paint('green')# Paint current square green

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Read the instructions

2. Uncheck “Auto Play” and Run - see how Bit is positioned
and what Bitʼs world looks like

3. One line at a time, tell Bit exactly what to do

4. Hit Run again and see if you got it right!

5. Repeat steps 3-4 until you are happy :)

42

Coding with Bit step by step

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- move()
Bit will take one step in the direction Bit is facing

- left()
Bit will turn 90 degrees left

- right()
Bit will turn 90 degrees right

- paint(color)
Bit will paint its current position color
Options for color are ‘red’, ‘green’, ‘blue’

43

Bit knows how to do 4 things

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- move()
Bit will take one step in the direction Bit is facing

- left()
Bit will turn 90 degrees left

- right()
Bit will turn 90 degrees right

- paint(color)
Bit will paint its current position color
Options for color are ‘red’, ‘green’, ‘blue’

Only bit knows these instructions, so we need to say
bit.move(), not just move()

44

Bit knows how to do 4 things

do_bit2
(if time)

45

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/bit2

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Read the instructions

2. Uncheck “Auto Play” and Run - see how Bit is positioned
and what Bitʼs world looks like

3. One line at a time, tell Bit exactly what to do

This can be very tedious :/

4. Hit Run again and see if you got it right!

5. Repeat steps 3-4 until you are happy :)

46

Coding with Bit step by step revisited

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Instructions: With Bit starting in the upper left corner facing
right, paint the entire first row green

47

Painting a row

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202348

One solution…

def do_row(filename):
 bit = Bit(filename)
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')

Instructions: With Bit starting in the upper left corner, paint
the entire first row green

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202349

Does it work on all maps?

Instructions: With Bit starting in the upper left corner, paint
the entire first row green

def do_row(filename):
 bit = Bit(filename)
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202350

How easy it is to change a just little?

Instructions: With Bit starting in the upper left corner, paint
the entire first row red

How many lines of code need
to change?

def do_row(filename):
 bit = Bit(filename)
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We can run certain lines of code over and over while some
condition is true

51

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while #some condition:
 # all indented lines run
 # while the condition is True
 # these lines out here
 # only run once
 # (after condition becomes False)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We can run certain lines of code over and over while some
condition is true

52

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while #something:
 bit.paint('green')
 bit.move()

def do_row(filename):
 bit = Bit(filename)
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')
 bit.move()
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Now we just need syntax to ask if Bit is blocked

53

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while #Bit is not blocked:
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- front_clear()
returns True or False if the square Bit is facing is
blocked

- left_clear()
returns True or False if the square to Bitʼs left is
blocked

- right_clear()
returns True or False if the square to Bitʼs right is
blocked

- get_color()
returns ‘green’, ‘red’, ‘blue’ or None for the
color of the square Bit is currently on

54

Questions Bit can ask

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Letʼs run this and see if it worked!

55

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1st loop

56

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():# returns True!
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1st loop iteration

57

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1st loop iteration

58

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

2nd loop iteration!

59

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

End of 2nd loop iteration!

60

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

End of 3rd loop iteration!

61

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

End of 4th loop iteration!

62

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Beginning of 5th loop iteration?

63

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Beginning of 5th loop iteration?

64

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear(): #returns False
 bit.paint('green')
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Beginning of 5th loop?

65

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear(): #returns False
 bit.paint('green')
 bit.move()
 # skip loop code, done

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Didnʼt paint last square :(How to fix the bug?

66

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear(): #returns False
 bit.paint('green')
 bit.move()
 # skip loop code, done

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Didnʼt paint last square :(How to fix the bug?

67

Introducing the while loop

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()
 # paint last square
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202368

Does it work on all maps?

Instructions: With Bit starting in the upper left corner, paint
the entire first row green

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()
 # paint last square
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202369

How easy it is to change a just little?

Instructions: With Bit starting in the upper left corner, paint
the entire first row red

How many lines of code
need to change?

def do_row(filename):
 bit = Bit(filename)
 while bit.front_clear():
 bit.paint('green')
 bit.move()
 # paint last square
 bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. First the condition is checked (it should be True or
False, more on that later)

2. If the condition is True, the “code that loops” runs, then
back to step 1.

3. If the condition is False, the “code doesnʼt loop” runs,
and the looping process is over

70

Recap: While Loop
while #condition:
 # code that loops
code that doesn’t loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

71

Conditions

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

72

Conditions

while #condition:
 # code that loops

while bit.front_clear():
 #if bit.front_clear returns True, loop

while True:
 # Always loops forever!
 # maybe a bad idea… don’t do this :)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

- The statement left == right is True if left is equal
to right and False otherwise

73

Conditions

while bit.get_color() == 'green':
 # loop if bit is standing on a green

while bit.front_clear() == False:
 #if bit.front_clear returns True, loop
 #Redundant! Don’t need ‘== True’

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

- The statement left == right is True if left is equal
to right and False otherwise

- Adding the word not in front of a conditions changes it
from False to True or from True to False

74

Conditions

while not bit.get_color() == 'green':
 # loop if bit is standing on anything
 # except a green

while not bit.front_clear():
 #loop if bit.front_clear returns False
 #AKA loop while bit is blocked!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock(filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

75

Unblock Bit

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock(filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

76

Unblock Bit

✅
✅

✅ ✅
✅

✅

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock(filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

77

Unblock Bit

def unblock(filename):
 bit = Bit(filename)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock(filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

78

Unblock Bit

def unblock(filename):
 bit = Bit(filename)
 while not bit.front_clear():

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock(filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

79

Unblock Bit

def unblock(filename):
 bit = Bit(filename)
 while not bit.front_clear():
 bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assume there is at least one direction that Bit is not
blocked (and Bit may be facing it!)

- Write the function unblock(filename), in which Bit
finds a direction she is not blocked and takes one step in
that direction

80

Unblock Bit

def unblock(filename):
 bit = Bit(filename)
 while not bit.front_clear():
 bit.right()
 # bit.front_clear must have been True!
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- AKA typos!
- Humans can usually understand code that has typos, but

computers are not as smart as humans :)
- Python catches syntax errors either:

- before runtime: before any code runs - also known
as a compile error. Ex: biterr1

- during runtime: while the code is running - also
known as a runtime error. Ex: biterr4

81

Syntax Errors

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr1
https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr4

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Run your code!

2. Oh no! My code didnʼt run all the way through :(

3. Read the error message, pay attention to the line

number

4. Go to that line number, fix the issue

5. Try step 1 again

82

Fixing Syntax Errors Step by Step

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- AKA typos!
- Humans can usually understand code that has typos, but

computers are not as smart as humans :)
- Python catches syntax errors either:

- before runtime: before any code runs - also known
as a compile error. Ex: biterr1

- during runtime: while the code is running - also
known as a runtime error. Ex: biterr4

Syntax errors are not the same as bugs! Bugs happen
when your code can run all the way through, but it

doesnʼt do what you wanted it to

83

Syntax Errors

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr1
https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/biterr4

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Welcome to 106A!
- Remember to fill out that section signup form ASAP
- Bit is a robot that can move, turn left and right, and
paint

- We can make certain lines of code run over and over with
while loops

- while loops require a condition that tells them if itʼs
okay to keep looping

- Conditions are True/False statements
- Syntax errors happen! Luckily, Python tells us how to fix

them

84

Recap

Frankie Cerkvenik, CS106A, 2023

See you next time!

85

