
Frankie Cerkvenik, CS106A, 2023

Control Flow
Loops, Conditions, Ifs, and a touch of decomp!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- First sections happen(ed) today and tomorrow

- Assignment 1 (Bit) is out, will need tomorrowʼs lecture

- YEAH hours this Friday 4-5pm in Gates B12

- If you are thinking about switching to 106B, do so before
tomorrow!

- Weekly review lecture by Clinton on Wednesdays at 1:30

- If you have a chromebook/no laptop...come chat

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap while loops and conditions

- Introduce if/else statements

- Introduce Decomp

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. First the condition is checked (it should be True or
False, more on that later)

2. If the condition is True, the “code that loops” runs, then
back to step 1.

3. If the condition is False, the looping process is over,
and the “code doesnʼt loop” runs

4

Recap: While Loop
while #condition:
 # code that loops
code that doesn’t loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop
while bit.front_clear():
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

1st loop

while bit.front_clear(): ✅
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

1st loop

while bit.front_clear():
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

2nd loop

while bit.front_clear(): ✅
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

2nd loop

while bit.front_clear():
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

3rd loop?

while bit.front_clear(): 🚫
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

Done
looping!

while bit.front_clear():
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

What would happen?

What happens if bit tries to
move when it is blocked?

while bit.front_clear():
 bit.move()
bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Runtime error!
while bit.front_clear():
 bit.move()
bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic move-forward loop

Key idea: must always check if
Bitʼs front is clear before

calling bit.move()

while bit.front_clear():
 bit.move()
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

1st loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

1st loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

2nd loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

2nd loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

3rd loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

3rd loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic infinite loop
while bit.front_clear():
 bit.paint('green')
bit will always be blocked here!

Key idea: The condition in the
while loop should eventually
be made False by the body of

the while loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

23

Recap: Conditions

while bit.front_clear():
front_clear returns True or False

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

- The statement left == right is True if left is equal
to right and False otherwise

24

Recap: Conditions

while bit.get_color() == 'green':
 # if bit.get_color returns ‘green’,
 # this condition is True

while bit.front_clear():
front_clear returns True or False

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Conditions are statements that evaluate to either True
or False

- The statement left == right is True if left is equal
to right and False otherwise

- Adding the word not in front of a conditions changes it
from False to True or from True to False

25

Recap: Conditions

while not bit.get_color() == 'green':
 # if bit.get_color returns ‘green’,
 # this condition is False

while bit.front_clear():
front_clear returns True or False

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Bit will start at some level
of the world, on the left and
facing right

- Every level below her will
be blocked

- Except one “hole”

- The hole will have a
one-block niche on the
right side

- Get Bit to that niche

go_niche

✅

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/go-niche

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Cmd-Return (Mac) or Ctrl-Return with cursor in code will
Run (very handy when pounding away on your code)

- The system knows what the world is supposed to look
like when the code works correctly

- If the output is correct at the end of the run, it gets a
green checkmark

- "diff" Feature - diagonal red marks on incorrect squares

Aside: Experimental Server Tricks

More practice: Bit Loop

https://wopr-service-qbrbcbuzwa-uw.a.run.app/#bitloop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap while loops and conditions

- Introduce if/else statements

- Introduce Decomp

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. First the condition is checked (it should be True or
False, more on that later)

2. If the condition is True, the code in block 1 runs,
otherwise skip to step 3

3. The code in block 2 runs

30

If statements
if #condition:
 # block 1 runs if condition is True
block 2 that runs regardless

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202331

Move bit (at most) once
if bit.front_clear(): ✅
 bit.move()
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202332

Move bit (at most) once
if bit.front_clear():
 bit.move()
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202333

Move bit (at most) once
if bit.front_clear():
 bit.move()
bit.paint('green')

Bit paints the second square green

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202334

Move bit (at most) once
if bit.front_clear(): 🚫
 bit.move()
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202335

Move bit (at most) once
if bit.front_clear():
 bit.move()
bit.paint('green')

Bit paints the first square green

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202336

Move bit (at most) once
if bit.front_clear():
 bit.move()
bit.paint('green')

Key idea: Bit may or may not move, but she will
always paint green

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Key idea: exactly one of block 1 and block 2 will run:
never both, never neither. Block 3 always runs

37

If/else statements
if #condition:
 # block 1 runs if condition is True
else:
 # block 2 runs if condition is False
block 3 runs regardless

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202338

If/else statements
if bit.front_clear(): 🚫
 bit.paint('green')
else:
 bit.paint('red')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202339

If/else statements
if bit.front_clear():
 bit.paint('green')
else:
 bit.paint('red')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202340

If/else statements
if bit.front_clear():
 bit.paint('green')
else:
 bit.paint('red')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202341

If/else statements
if bit.front_clear(): 🚫
 bit.paint('green')
else:
 bit.paint('red')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202342

If/else statements
if bit.front_clear():
 bit.paint('green')
else:
 bit.paint('red')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202343

If/else statements
if bit.front_clear():
 bit.paint('green')
else:
 bit.paint('red')
bit.right()

Frankie Cerkvenik, CS106A, 2023

Put it all together: loops+ifs
double _move

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/double-move

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap while loops and conditions

- Introduce if/else statements

- Introduce Decomp

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- In every bit exercise so far, we have implemented only 1
function to solve the entire problem - we see def only
once

Another look at functions

def bit_func(filename):
 # all the code to solve the problem!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- In every bit exercise so far, we have implemented only 1
function to solve the entire problem - we see def only
once

- We often call bit-specific functions while solving:

- “Calling” a function means to run its code - your solution
function is “called” by the experimental server when you
hit run

Another look at functions

def go_south(bit):
bit.right()
if bit.front_clear():

bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Only Bit knows about move and front_clear, so we
have to access them through Bit when calling with
bit.move()

- But the function go_south is available for anyone to
call!

Calling functions

def go_south(bit):
bit.right()
if bit.front_clear():

bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We call go_south in another function like so:
Calling functions

def go_south(bit):
bit.right()
if bit.front_clear():

bit.move()

def paint_south(filename):
bit = Bit(filename)
go_south(bit)
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run paint_south
def go_south(bit):

bit.right()
if bit.front_clear():

bit.move()

def paint_south(filename):
bit = Bit(filename)
go_south(bit)
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run paint_south
def go_south(bit):

bit.right()
if bit.front_clear():

bit.move()

def paint_south(filename):
bit = Bit(filename)
go_south(bit) # function call!
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run paint_south
def go_south(bit):

bit.right()
if bit.front_clear():

bit.move()

def paint_south(filename):
bit = Bit(filename)
go_south(bit) # pause here
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run paint_south
def go_south(bit):

bit.right()
if bit.front_clear():

bit.move()

def paint_south(filename):
bit = Bit(filename)
go_south(bit) # pause here
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run paint_south
def go_south(bit):

bit.right()
if bit.front_clear():

bit.move() # done!

def paint_south(filename):
bit = Bit(filename)
go_south(bit) # done here too!
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run paint_south
def go_south(bit):

bit.right()
if bit.front_clear():

bit.move() # done!

def paint_south(filename):
bit = Bit(filename)
go_south(bit)
bit.paint('green')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Running func2:

1. Run code block B

2. Run code block A

3. Run code block C

Calling functions recap
def func1():

code block A

def func2():
code block B
func1()
code block C

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We will talk about this more later, but for now, when
decomposing Bit functions:
1. Always take in bit when defining (put “bit” in

parenthesis after def function_name)
2. Always pass in bit when calling

Syntax note
def helper_function(bit):

must “take in” bit

def main_bit_problem(filename):
required first line
bit = Bit(filename)
helper_function(bit) # must “pass in” bit

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Often a task breaks down into smaller logical tasks like:
“Go to the farthest wall”
“Spin in a circle”
“Paint 3 squares”

- Those tasks can be nicely decomposed into separate
functions, and then you could call them from your
solution, and it becomes nice and readable!

Why make multiple functions?

def soln(filename):
bit = Bit(filename)
go_to_far_wall(bit)
spin(bit)
paint_3(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- It is good style to decompose (decomp) your solution
- It makes your code readable for your collaborators (and

for Future You)
- It can help you solve a big problem by making you solve

several small ones

Why make multiple functions?
def soln(filename):

bit = Bit(filename)
go_to_far_wall(bit)
spin(bit)
paint_3(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Bit starts at the top-left corner of the world facing down
- The world has no obstacles (black squares)
- Fill every square in the world blue
- Use the provided function fill_row_blue()

Put it all together: fill_world_blue

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/fill

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- When using “helper” functions to solve a bigger
problems, it is good to define the pre and post conditions
for that helper

- Pre conditions: does fill_row_blue assume that bit is
facing a certain direction? Does it assume she is
unblocked?

- Post conditions: What does the world look like after
calling fill_row_blue? Where is bit? Where is she facing?

Investigate fill_row_blue

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- When using “helper” functions to solve a bigger
problems, it is good to define the pre and post conditions
for that helper

- Pre conditions: Assume bit is facing down at left edge

- Post conditions: The row bit is on is blue and she is back
where she started, facing down

Investigate fill_row_blue

Lets code: fill_world_blue

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/fill

If time: blue_dip

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/blue-dip

Frankie Cerkvenik, CS106A, 2023

Bonus

We will revisit this later in the quarter!

if/elif and if/elif/else

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Key idea: at most one of block A, B and C will run, but itʼs
possible for none to run

66

If/elif statements
if #condition1:
 # block A runs if condition1 is True
elif #condition2:
 # block B runs if condition 1 is False
 # and condition2 is true
elif #condition3:
 # block C runs if conditions 1 and 2
 # are False and condition3 is true
 # Can have many more elifs here

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202367

If/elif statements
if bit.get_color() == 'red': ✅
 bit.paint('green')
elif bit.get_color() == 'green':
 bit.paint('red')
elif bit.get_color() == None:
 bit.paint('blue')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202368

If/elif statements
if bit.get_color() == 'red':
 bit.paint('green')
elif bit.get_color() == 'green':
 bit.paint('red')
elif bit.get_color() == None:
 bit.paint('blue')
bit.right()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202369

If/elif statements
if bit.get_color() == 'red':
 bit.paint('green')
elif bit.get_color() == 'green':
 bit.paint('red')
elif bit.get_color() == None:
 bit.paint('blue')
bit.right()

Note: we donʼt check any of the other
conditions once we run a block

 (even though the second condition would
now be true)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202370

If/elif statements
if bit.get_color() == 'red':
 bit.paint('green')
elif bit.get_color() == 'green':
 bit.paint('red')
elif bit.get_color() == None:
 bit.paint('blue')
bit.right()

English summary of this code snippet?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202371

If/elif statements
if bit.get_color() == 'red':
 bit.paint('green')
elif bit.get_color() == 'green':
 bit.paint('red')
elif bit.get_color() == None:
 bit.paint('blue')
bit.right()

English summary of this code snippet?
If a square is red or green, switch it to be

the other one, and if its blank, make it blue.
(do nothing to blue squares)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Key idea: exactly one of block A, B and C will run, never
none, never more than one

72

If/elif/else statements
if #condition1:
 # block A runs if condition1 is True
elif #condition2:
 # block B runs if condition 1 is False
 # and condition2 is true
 # Can have many more elifs here
else:
 # block C runs if conditions 1 and 2
 # are False

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202373

If/elif/else statements
if bit.front_clear():
 bit.move()
elif bit.right_clear():
 bit.right()
 bit.move()
elif bit.left_clear():
 bit.left()
 bit.move()
else:
 bit.paint('red')

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202374

If/elif/else statements
if bit.front_clear():
 bit.move()
elif bit.right_clear():
 bit.right()
 bit.move()
elif bit.left_clear():
 bit.left()
 bit.move()
else:
 bit.paint('red')

English summary: Bit will move at most once, in the
first clear direction she finds, or she will paint red

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202375

If/elif/else statements
if bit.front_clear():
 bit.move()
elif bit.right_clear():
 bit.right()
 bit.move()
elif bit.left_clear():
 bit.left()
 bit.move()

How are 3 ifs different from if, elif, elif?

if bit.front_clear():
 bit.move()
if bit.right_clear():
 bit.right()
 bit.move()
if bit.left_clear():
 bit.left()
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 202376

If/elif/else statements
if bit.front_clear():
 bit.move()
elif bit.right_clear():
 bit.right()
 bit.move()
elif bit.left_clear():
 bit.left()
 bit.move()

How are 3 ifs different from if, elif, elif?
Bit could move at most once with the code on the left,

but could move many times on the right

if bit.front_clear():
 bit.move()
if bit.right_clear():
 bit.right()
 bit.move()
if bit.left_clear():
 bit.left()
 bit.move()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- While loops are powerful and we can use any condition
as our test to keep going!

- We can also use if statements with any conditions to run
something only once if the condition is true

- We can decompose big problems into smaller functions,
and call them from our main solution function!

Recap

