Control Flow

Loops, Conditions, Ifs, and a touch of decomp!

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Housekeeping
First sections happen(ed) today and tomorrow

Assignment 1 (Bit) is out, will need tomorrow’s lecture
YEAH hours this Friday 4-5pm in Gates B12

If you are thinking about switching to 106B, do so before
tomorrow!

Weekly review lecture by Clinton on Wednesdays at 1:30

If you have a chromebook/no laptop...come chat

Stanford | ENGINEERING

Computer Science

Today

- Recap while loops and conditions
- Introduce if/else statements

- Introduce Decomp

Stanford | ENGINEERING

Computer Science

Recap: While Loop

while #condition:
code that loops
code that doesn’t loop

1. Firstthe condition is checked (it should be True or
False, more on that later)

2. Ifthe conditionis True, the “code that loops” runs, then
back to step 1.

3. Ifthe conditionis False, the looping process is over,
and the “code doesn’t loop” runs

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear():
bit.move ()
bit will always be blocked here!

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear(): v
bit.move ()
bit will always be blocked here!

1st loop

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear():
bit.move ()
bit will always be blocked here!

1st loop

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear(): u
bit.move ()
bit will always be blocked here!

2nd loop

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear():
bit.move ()
bit will always be blocked here!

2nd loop

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear(): 69
bit.move ()
bit will always be blocked here!

3rd loop?

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear():
bit.move ()
bit will always be blocked here!

Done
looping!

Stanford | ENGINEERING

Computer Science

What would happen?

while bit.front clear():
bit.move ()
bit.move ()

What happens if bit tries to
move when it is blocked?

Stanford | ENGINEERING

Computer Science

Runtime error!

while bit.front clear():

bit.move ()
bit.move ()

Case-2: Runtime Error Xre

Exception: Bad move,
front 1s not clear,

in:do_left line 5 (Case
2)

Stanford | ENGINEERING

Computer Science

The classic move-forward loop

while bit.front clear():
bit.move ()
bit will always be blocked here!

Key idea: must always check if
Bit’s front is clear before
calling bit.move ()

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

1st loop

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

1st loop

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

2nd loop

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

2nd loop

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

3rd loop

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

3rd loop

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

Case-2: Timed Out X te

Run timed out. Try again,
or possible infinite Lloop.

Stanford | ENGINEERING

Computer Science

The classic infinite loop

while bit.front clear():
bit.paint('green')
bit will always be blocked here!

@ Key idea: The condition in the

while loop should eventually

be made False by the body of
the while loop

Stanford | ENGINEERING

Computer Science

Recap: Conditions

- Conditions are statements that evaluate to either True
OorFalse

while bit.front clear():
front clear returns True or False

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Recap: Conditions

- Conditions are statements that evaluate to either True
OorFalse

while bit.front clear():
front clear returns True or False

- Thestatement left == rightis True if leftis equal
to right and False otherwise

while bit.get color() == 'green':
if bit.get color returns ‘green’,
this condition is True

Stanford | ENGINEERING

Computer Science

Recap: Conditions

- Conditions are statements that evaluate to either True
OorFalse

while bit.front clear():
front clear returns True or False

- Thestatement left == rightis True if leftis equal
to right and False otherwise

- Adding the word not in front of a conditions changes it
from Falseto True orfrom True to False

while not bit.get color() == 'green':
if bit.get color returns ‘green’,
this condition is False

Stanford | ENGINEERING

Computer Science

go niche

- Bit will start at some level
of the world, on the left and
facing right

- Every level below her will
be blocked

- Exceptone “hole”

- The hole will have a
one-block niche on the
right side

- Get Bit to that niche

Stanford | ENGINEERING

Computer Science

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/go-niche

Aside: Experimental Server Tricks

Cmd-Return (Mac) or Ctrl-Return with cursor in code will
Run (very handy when pounding away on your code)

The system knows what the world is supposed to look
like when the code works correctly

If the output is correct at the end of the run, it gets a
green checkmark

"diff" Feature - diagonal red marks on incorrect squares

Stanford | ENGINEERING

Computer Science

More practice: Bit Loop

https://wopr-service-qbrbcbuzwa-uw.a.run.app/#bitloop

Today
: hited I e
- Introduce if/else statements

- Introduce Decomp

Stanford | ENGINEERING

Computer Science

If statements

if #condition:
block 1 runs if condition is True
block 2 that runs regardless

First the condition is checked (it should be True or
False, more on that later)

2. Ifthe conditionis True, the code in block 1 runs,
otherwise skip to step 3

3. Thecodein block 2 runs

Stanford | ENGINEERING

Computer Science

Move bit (at most) once

if bit.front clear(): LJ
bit.move ()
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Move bit (at most) once

if bit.front clear():
bit.move ()
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Move bit (at most) once

if bit.front clear():
bit.move ()
bit.paint('green')

Bit paints the second square green

Stanford | ENGINEERING

Computer Science

Move bit (at most) once

if bit.front clear(): 69
bit.move ()
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Move bit (at most) once

if bit.front clear():
bit.move ()
bit.paint('green')

Bit paints the first square green

Stanford | ENGINEERING

Computer Science

Move bit (at most) once

if bit.front clear():

bit.move ()

bit.paint('green')

Key idea: Bit may or may not move, but she will

always paint green

Stanford | ENGINEERING

Computer Science

If/else statements

if #condition:

block 1 runs if condition is True
else:

block 2 runs if condition is False
block 3 runs regardless

Key idea: exactly one of block 1 and block 2 will run:
never both, never neither. Block 3 always runs

Stanford | ENGINEERING

Computer Science

If/else statements

if bit.front clear(): 69
bit.paint('green')
else:
bit.paint('red')
bit.right ()

Stanford | ENGINEERING

Computer Science

If/else statements

if bit.front clear():
bit.paint('green')
else:
bit.paint('red')
bit.right ()

Stanford | ENGINEERING

Computer Science

If/else statements

if bit.front clear():
bit.paint('green')
else:
bit.paint('red')
bit.right ()

Stanford | ENGINEERING

Computer Science

If/else statements

if bit.front clear(): 69
bit.paint('green')
else:
bit.paint('red')
bit.right ()

Stanford | ENGINEERING

Computer Science

If/else statements

if bit.front clear():
bit.paint('green')
else:
bit.paint('red')
bit.right ()

Stanford | ENGINEERING

Computer Science

If/else statements

if bit.front clear():
bit.paint('green')
else:
bit.paint('red')
bit.right ()

)

Stanford | ENGINEERING

Computer Science

Put it all together: loops+ifs

double move

Stanford | ENGINEERING
Computer Science

Frankie Cerkvenik, CS106A, 2023

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/double-move

Today
- hited I e
—redueetfelsestaterments

- Introduce Decomp

Stanford | ENGINEERING

Computer Science

Another look at functions

- In every bit exercise so far, we have implemented only 1
function to solve the entire problem - we see def only
once

def bit func(filename) :
all the code to solve the problem!

Stanford | ENGINEERING

Computer Science

Another look at functions

- In every bit exercise so far, we have implemented only 1
function to solve the entire problem - we see def only

once
- We often call bit-specific functions while solving:

def go south(bit):
bit.right()
if bit.front clear():
bit.move ()

- “Calling” a function means to run its code - your solution
function is “called” by the experimental server when you

hit run

Stanford | ENGINEERING

Computer Science

Calling functions

- Only Bit knows aboutmove and front clear,sowe
have to access them through Bit when calling with
bit.move ()

- Butthefunction go south is available for anyone to
call!

def go south(bit):
bit.right()
if bit.front clear():
bit.move ()

Stanford | ENGINEERING

Computer Science

Calling functions
We call go south in another function like so:

def go south(bit):
bit.right()
if bit.front clear():
bit.move ()

def paint south(filename):
bit = Bit(filename)
go south(bit)
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Run paint_south

def go south(bit):
bit.right()
if bit.front clear():
bit.move ()

def paint south(filename):
bit = Bit(filename)
go south(bit)
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Run paint_south

def go south(bit):
bit.right()
if bit.front clear():
bit.move ()

def paint south(filename):
bit = Bit(filename)
go south(bit) # function call!
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Run paint_south

def go south(bit):
bit.right ()
if bit.front clear():
bit.move ()

def paint south(filename):
bit = Bit(filename)
go south(bit) # pause here
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Run paint_south

def go south(bit):
bit.right()
if bit.front clear():
bit.move ()

def paint south(filename):
bit = Bit(filename)
go south(bit) # pause here
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Run paint_south

def go south(bit):
bit.right()
if bit.front clear():
bit.move () # done!

def paint south(filename):
bit = Bit(filename)
go south(bit) # done here too!
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Run paint_south

def go south(bit):
bit.right()
if bit.front clear():
bit.move () # done!

def paint south(filename):
bit = Bit(filename)
go south(bit)
bit.paint('green')

Stanford | ENGINEERING

Computer Science

Calling functions recap

def funcl () :
code block A

def func2() :
code block B
funcl ()
code block C

Running func2:

1. Run codeblock B
2. Runcodeblock A
3. Run code block C

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Syntax note

def helper function(bit):
must “take in” bit

def main bit problem(filename) :
required first line
bit = Bit(filename)
helper function(bit) # must “pass in” bit

We will talk about this more later, but for now, when
decomposing Bit functions:

1. Always take in bit when defining (put “bit” in
parenthesis after def function name)
2. Always pass in bit when calling

Stanford | ENGINEERING

Computer Science

Why make multiple functions?

- Often a task breaks down into smaller logical tasks like:
“Go to the farthest wall”
“Spinin acircle”

“Paint 3 squares”

- Those tasks can be nicely decomposed into separate
functions, and then you could call them from your
solution, and it becomes nice and readable!

def soln(filename) :
bit = Bit(filename)
go _to far wall (bit)
spin (bit)
paint 3 (bit)

Stanford | ENGINEERING

Computer Science

Why make multiple functions?

def soln(filename) :
bit = Bit(filename)
go_to far wall(bit)
spin (bit)
paint 3 (bit)

- Itis good style to decompose (decomp) your solution
- It makes your code readable for your collaborators (and
for Future You)

- It can help you solve a big problem by making you solve
several small ones

Stanford | ENGINEERING

Computer Science

Put it all together: fill world blue

- Bit starts at the top-left corner of the world facing down
- The world has no obstacles (black squares)

- Fill every square in the world blue

- Use the provided function £i11 row blue ()

Frankie Cerkvenik, CS106A, 2023

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/fill

Investigate fill_row_blue

- When using “helper” functions to solve a bigger
problems, it is good to define the pre and post conditions
for that helper

- Pre conditions: does fill_row_blue assume that bit is
facing a certain direction? Does it assume she is
unblocked?

- Post conditions: What does the world look like after
calling fill_row_blue? Where is bit? Where is she facing?

Stanford | ENGINEERING

Computer Science

Investigate fill_row_blue

- When using “helper” functions to solve a bigger

problems, it is good to define the pre and post conditions
for that helper

- Pre conditions: Assume bit is facing down at left edge

- Post conditions: The row bitis onis blue and she is back
where she started, facing down

& &= | |]

—)

Stanford | ENGINEERING

Computer Science

Lets code: fill world blue

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/fill

If time: blue _dip

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/blue-dip

Bonus
if/elif and if/elif/else

We will revisit this later in the quarter!

Stanford | ENGINEERING
Computer Science

Frankie Cerkvenik, CS106A, 2023

If/elif statements

if #conditionl:
block A runs if conditionl is True
elif #condition2:
block B runs if condition 1 is False
and condition2 is true
elif #condition3:
block C runs if conditions 1 and 2
are False and condition3 is true
Can have many more elifs here

Key idea: at most one of block A, B and C will run, but it’s
possible for none to run

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

If/elif statements

if bit.get color() == 'red': |4
bit.paint('green')

elif bit.get color() == 'green':
bit.paint('red')

elif bit.get color() == None:
bit.paint('blue')

bit.right ()

Stanford | ENGINEERING

Computer Science

If/elif statements

if bit.get color() == 'red':
bit.paint('green')

elif bit.get color() == 'green':
bit.paint('red')

elif bit.get color() == None:
bit.paint('blue')

bit.right ()

&

Stanford | ENGINEERING

Computer Science

If/elif statements

if bit.get color() == 'red':
bit.paint('green')

elif bit.get color() == 'green':
bit.paint('red')

elif bit.get color() == None:

bit.paint('blue')
bit.right ()

@ Note: we don’t check any of the other
conditions once we run a block

(even though the second condition would
now be true)

Stanford | ENGINEERING

Computer Science

If/elif statements

if bit.get color() == 'red':
bit.paint('green')

elif bit.get color() == 'green':
bit.paint('red')

elif bit.get color() == None:

bit.paint('blue')
bit.right ()

English summary of this code snippet?

Stanford | ENGINEERING

Computer Science

If/elif statements

if bit.get color() == 'red':
bit.paint('green')

elif bit.get color() == 'green':
bit.paint('red')

elif bit.get color() == None:

bit.paint('blue')
bit.right ()

English summary of this code snippet?

If a square is red or green, switch

it to be

the other one, and if its blank, make it blue.
(do nothing to blue squares)

Stanford | ENGINEERING

Computer Science

If/elif/else statements

if #conditionl:
block A runs if conditionl is True
elif #condition2:
block B runs if condition 1 is False
and condition2 is true
Can have many more elifs here
else:
block C runs if conditions 1 and 2
are False

Key idea: exactly one of block A, B and C will run, never
none, never more than one

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

If/elif/else statements

if bit.front clear():
bit.move ()

elif bit.right clear():
bit.right ()
bit.move ()

elif bit.left clear():
bit.left ()
bit.move ()

else:
bit.paint('red')

Stanford | ENGINEERING

Computer Science

If/elif/else statements

if bit.front clear():
bit.move ()

elif bit.right clear():
bit.right ()
bit.move ()

elif bit.left clear():
bit.left ()
bit.move ()

else:
bit.paint('red')

English summary: Bit will move at most once, in the
first clear direction she finds, or she will paint red

Stanford | ENGINEERING

Computer Science

If/elif/else statements

if bit.front clear():
bit.move ()

elif bit.right clear():
bit.right ()
bit.move ()

elif bit.left clear():
bit.left ()
bit.move ()

if bit.front clear():
bit.move ()

if bit.right clear():
bit.right()
bit.move ()

if bit.left clear():
bit.left()
bit.move ()

How are 3 ifs different from if, elif, elif?

Stanford | ENGINEERING

Computer Science

If/elif/else statements

if bit.front clear():
bit.move ()

elif bit.right clear():
bit.right ()
bit.move ()

elif bit.left clear():
bit.left ()
bit.move ()

if bit.front clear():
bit.move ()

if bit.right clear():
bit.right()
bit.move ()

if bit.left clear():
bit.left()
bit.move ()

How are 3 ifs different from if, elif, elif?
Bit could move at most once with the code on the left,
but could move many times on the right

Stanford | ENGINEERING

Computer Science

Recap

- While loops are powerful and we can use any condition
as our test to keep going!

- We can also use if statements with any conditions to run
something only once if the condition is true

- We can decompose big problems into smaller functions,
and call them from our main solution function!

Stanford | ENGINEERING

Computer Science

