
Frankie Cerkvenik, CS106A, 2023

Variables and Decomp
A very exciting day

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- No class on Tuesday (4th of July), there will be a
recorded lecture to watch before Thursday

- Wednesday review starts next week, meet Clinton!

- We will have all lecture content for assignment 1 done
today!

- Ecy will be lecturing on Thursday

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Decomp recap + more decomp!
- Revisit fill_world_blue
- Implement challenge problem hurdles

- Introducing: Variables!
- What are they
- How do we use them
- Challenge problem that uses variables + loops

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Running func2:

1. Run code block B

2. Run code block A

3. Run code block C

Calling functions recap
def func1():

code block A

def func2():
code block B
func1()
code block C

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We will talk about this more later, but for now, when
decomposing Bit functions:
1. Always take in bit when defining (put “bit” in

parenthesis after def function_name)
2. Always pass in bit when calling

Syntax note
def helper_function(bit):

must “take in” bit

def main_bit_problem(filename):
required first line
bit = Bit(filename)
helper_function(bit) # must “pass in” bit

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Often a task breaks down into smaller logical tasks like:
“Go to the farthest wall”
“Spin in a circle”
“Paint 3 squares”

- Those tasks can be nicely decomposed into separate
functions, and then you could call them from your
solution, and it becomes nice and readable!

Why make multiple functions?

def soln(filename):
bit = Bit(filename)
go_to_far_wall(bit)
spin(bit)
paint_3(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- It is good style to decompose (decomp) your solution
- It makes your code readable for your collaborators (and

for Future You)
- It can help you solve a big problem by making you solve

several small ones

Why make multiple functions?
def soln(filename):

bit = Bit(filename)
go_to_far_wall(bit)
spin(bit)
paint_3(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- One day you will solve Big Problems using code like:

“Given this giant set of patientsʼ biological and
demographic data, what is the average age of occurence
of X disease and in patients with X biological marker?”

“Given this map of natural resources, existing
communities, land ownership and historical weather
data, where is the best place to build new homes?”

“Build a tool that scans an email for harmful language or
imagery and hides them from the reader”

Why make multiple functions?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Big Problems are often made up of small problems that
other people have already solved!

“Given this giant set of patientsʼ biological and
demographic data, what is the average age of occurence
of X disease and in patients with X biological marker?”

✅ Can reuse someoneʼs read_data_set()
🧠 Need to write pull_specific_patients()
✅ Can reuse someoneʼs compute_avg()

Why make multiple functions?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- If you solve a Big Problem in a way someone else can
read and understand, they can use your solution for their
own Bigger Problem!

“Build a tool that scans an email for harmful language or
imagery and hides them from the reader ”

def scan_email():
separate_text_and_images()
id_bad_text()
id_bad_images()
hide_bad_item()

Why make multiple functions?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- If you solve a Big Problem in a way someone else can
read and understand, they can use your solution for their
own Bigger Problem!

“Build a tool that scans an email any message for harmful
language or imagery and hides them from the reader ”

def scan_message():
if is_email():

scan_email()
else:

new code

Why make multiple functions?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

🧠 A good function does one conceptual thing

🧠 You know what that thing is from the name

🧠 It is short: Less than ~10 lines, at most ~3 levels of

indents

🧠 Reusable by you and others, easy to read and modify

🧠 Well commented: pre- and post-conditions are clear

Principles of Decomp

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

🧠 A good function does one conceptual thing

🧠 You know what that thing is from the name

🧠 It is short: Less than ~10 lines, at most ~3 levels of

indents

🧠 Reusable by you and others, easy to read and modify

🧠 Well commented: pre- and post-conditions are clear

There are two types of programs:
One is so complex, there is nothing obvious wrong with it.

One is so clear, that this obviously nothing wrong with it.

Principles of Decomp

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Recall fill_row_blue, which we used in
fill_world_blue:

- Pre conditions: Assume bit is facing down at left edge

- Post conditions: The row bit is on is blue and she is back
where she started, facing down

A note on Pre- and Post- Conditions

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Why make bit walk all the way back to where she started?
What if fill_row_blue left bit at the end of the row?

- Pre conditions: Assume bit is facing down at left edge

- Post conditions: The row bit is on is blue and she is at
the left edge of the row, facing down

A note on Pre- and Post- Conditions

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Why didnʼt fill_row_blue fill the whole
row?

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Recall pre-condition:
Assume bit is facing down at left edge

But we were at the right edge when we
called fill_row_blue

Implement fill_world_blue now
def fill_world_blue(filename):
 # Old implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement fill_world_blue now
def fill_world_blue(filename):
 # New implementation!
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)

the fix: go back to right edge
 bit.right()
 while bit.front_clear():
 bit.move()
 bit.left()
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023

Which is better?
def fill_world_blue(filename):
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

def fill_world_blue(filename):
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.right()
 while bit.front_clear():
 bit.move()
 bit.left()
 bit.move()
 fill_row_blue(bit)

Frankie Cerkvenik, CS106A, 2023

Which is better?
def fill_world_blue(filename):
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.move()
 fill_row_blue(bit)

def fill_world_blue(filename):
 bit = Bit(filename)
 while(bit.front_clear()):
 fill_row_blue(bit)
 bit.right()
 while bit.front_clear():
 bit.move()
 bit.left()
 bit.move()
 fill_row_blue(bit)

The original solution is:
✅ More readable
✅ Shorter
✅ Has fewer levels of indents

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- If your helper function would be called in a loop, try to
make the pre and post conditions match up!

- In general with Bit problems, it is best for Bit to end in
the same position she started for helper functions, or at
least facing the same direction

- Getting Bit back to her old position or facing the old
direction might add some clunky code to your helper- it
is better to have it there than in your main solution
function!

Pre/Post Condition Tips

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Bit starts facing up at the left edge of the world. There are
a series of “hurdles” of any height and width. There is a
niche with the top blocked at the end of the world.

- Make Bit walk over all the hurdles, painting every square
green. Bit should end in the niche facing up

Before

After

Put it all together: hurdles

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/hurdles

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Start with the big problem and identify a sub problem.

2. Imagine you have a function that solves the sub
problem. How should you call it to solve the big
problem?

3. Repeat this process to write the code for the sub
problem!

Top Down strategy

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Start with the big problem and identify a sub problem.

Hurdle sub-problem: solve_1_hurdle(bit)
Pre: Bit is facing up, right in front of a hurdle
Post: Bit is at the next hurdle, facing up

2. Imagine you have a function that solves the sub problem.
How should you call it to solve the big problem?

def solve_hurdles(filename):
 bit = Bit(filename)
 while bit.front_clear():
 solve_1_hurdle(bit)

Top Down strategy

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Start with the big problem and identify a sub problem.

Hurdle sub-problem: solve_1_hurdle(bit)
Pre: Bit is facing up, right in front of a hurdle
Post: Bit is at the next hurdle, facing up

2. Imagine you have a function that solves the sub
problem. How should you call it to solve the big
problem?

Top Down strategy

Frankie Cerkvenik, CS106A, 2023

Letʼs code: hurdles

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/hurdles

Frankie Cerkvenik, CS106A, 2023

This is all the content you need
for assignment 1

(you donʼt need variables for assignment 1)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Decomp recap + more decomp!
- Revisit fill_world_blue
- Implement challenge problem hurdles

- Introducing: Variables!
- What are they
- How do we use them
- Challenge problem that uses variables + loops

Today

Frankie Cerkvenik, CS106A, 2023

I am very excited
🎉🎉🎉🎉🎉

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We will continue to build on our definition of variables
and “memory” throughout this class

- You will continue to build on your definition of variables
and “memory” throughout your career as a computer
scientist

- This makes me very emotional

- For now: variables are something that hold a value, and
you can update that value as much as you want

Variables

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- For now: variables are something that hold a value, and
you can update that value as much as you want

- Here is the syntax for making a variable:
 var_name = #something

Variables

def variable_example(filename):
bit = Bit(filename)
color = bit.get_color()

The variable color has value 'green' for
this map

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- For now: variables are something that hold a value, and
you can update that value as much as you want

- Here is the syntax for making a variable:
 var_name = #something

Variables

def variable_example(filename):
bit = Bit(filename)
color = bit.get_color()

But on this map, color has value 'blue'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Letʼs write a function copy_cat in which Bit starts on a
square with some color, and then paints the square in front
of her the same color. Bit will always have an open square in

front of her

Using Variables

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat
def copy_cat(filename):

bit = Bit(filename)
color = bit.get_color()
we have the OG color, what now?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Color will have value 'blue', 'red', or 'green', and we can
“pass it into” bit.paint just like we are used to passing

'blue', 'red', or 'green', into bit.paint

Implement copy_cat
def copy_cat(filename):

bit = Bit(filename)
color = bit.get_color()
bit.move()
bit.paint(color)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

bit.get_color returns 'green',
and we save that in color

Implement copy_cat
def copy_cat(filename):

bit = Bit(filename)
color = bit.get_color() # green
bit.move()
bit.paint(color)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

bit.get_color returns 'green',
and we save that in color

Implement copy_cat
def copy_cat(filename):

bit = Bit(filename)
color = bit.get_color() # green
bit.move()
bit.paint(color)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

bit.get_color returns 'green',
and we save that in color

Now, calling bit.paint(color) is
like calling bit.paint('green')

Implement copy_cat
def copy_cat(filename):

bit = Bit(filename)
color = bit.get_color() # green
bit.move()
bit.paint(color)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Now, Bit might not start on a square with a color to copy. If
thatʼs the case, paint the next square red

Modify copy_cat

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_mod
def copy_cat_mod(filename):

bit = Bit(filename)
color = 'red' # default color to value ‘red’
if not bit.get_color() == None:

if there is indeed a color here
change the value of color!
color = bit.get_color()

bit.move()
bit.paint(color)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_mod
def copy_cat_mod(filename):

bit = Bit(filename)
color = 'red' # default color to value ‘red’
if not bit.get_color() == None:

if there is indeed a color here
change the value of color!
color = bit.get_color()

bit.move()
bit.paint(color)

color currently has value 'red'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_mod
def copy_cat_mod(filename):

bit = Bit(filename)
color = 'red' # default color to value ‘red’
if not bit.get_color() == None:

if there is indeed a color here
change the value of color!
color = bit.get_color()

bit.move()
bit.paint(color)

color currently has value 'red'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_mod
def copy_cat_mod(filename):

bit = Bit(filename)
color = 'red' # default color to value ‘red’
if not bit.get_color() == None:

if there is indeed a color here
change the value of color!
color = bit.get_color()

bit.move()
bit.paint(color)

color now has value 'green'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_mod
def copy_cat_mod(filename):

bit = Bit(filename)
color = 'red' # default color to value ‘red’
if not bit.get_color() == None:

if there is indeed a color here
change the value of color!
color = bit.get_color()

bit.move()
bit.paint(color)

color now has value 'green'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_mod
def copy_cat_mod(filename):

bit = Bit(filename)
color = 'red' # default color to value ‘red’
if not bit.get_color() == None:

if there is indeed a color here
change the value of color!
color = bit.get_color()

bit.move()
bit.paint(color)

color now has value 'green'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Letʼs write a function copy_cat_row in which Bit starts on
a square that has a color. Bit will paint the row that color
until she finds a new color, then sheʼll switch to that one.

Before

After

Variables and loops

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_row
def copy_cat_mod(filename):

bit = Bit(filename)
first, let’s save our starting color

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_row
def copy_cat_mod(filename):

bit = Bit(filename)
color = bit.get_color() # starting color

Next, let’s add in code to walk to each
square

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_row
def copy_cat_mod(filename):

bit = Bit(filename)
color = bit.get_color() # starting color
while bit.front_clear():

bit.move() # move to square to be painted

Now, we need code to either paint a blank
square … what to do if the square isn’t
blank?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_row
def copy_cat_mod(filename):

bit = Bit(filename)
color = bit.get_color() # starting color
while bit.front_clear():

bit.move() # move to square to be painted
if bit.get_color() == None:

if blank, paint the blank square
bit.paint(color)

else:
otherwise, change color
color = bit.get_color()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Implement copy_cat_row
def copy_cat_mod(filename):

bit = Bit(filename)
color = bit.get_color() # starting color
while bit.front_clear():

bit.move() # move to square to be painted
if bit.get_color() == None:

if blank, paint the blank square
bit.paint(color)

else:
otherwise, change color
color = bit.get_color()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The experimental server only has a limited number of
problems on it, which it makes it hard to test custom Bit
puzzles (like copy_cat_row)

- But you can still do it!

1. Pick a problem with maps that you like (e.g. big open
maps or maps with a lot of obstacles)

2. If you need the world to look a certain way before solving
a problem, write code to make Bit set it up, then get her
in the position you want

3. Write a function to solve your custom Bit problem, and
Run see if it worked! Ignore what the server says- just
eyeball verify that Bit did what you wanted!

Tricking the experimental server

Frankie Cerkvenik, CS106A, 2023

Checking copy_cat_row on
go_rgb

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/go-rgb

Frankie Cerkvenik, CS106A, 2023

If time: beloved

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/code1/beloved

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Decomp is powerful stuff! It helps you solve big problems
and it helps make your code more readable

- Top-Down decomp strat: Take the big problem and
identify one smaller subtask. Solve the big problem
assuming you have a function that does the subtask.
Repeat on subtask!

- Variables are ways for us to remember a value, like the
color of a square, throughout our code.

- We can change variables throughout our code to make it
dynamic

- Remember to watch lecture video before Thursday!

Recap

