
Images + PyCharm
by Ecy!

Ecy King, CS106A, 2023

Image Filtering

Housekeeping
 Assignment 1, Bit is due this Friday, July 7th at 11:59 pm

with Grace Period until Saturday, July 8th at 11:59 pm
Second section happening this week
Coding can be difficult, but rewarding, keep at it!

Photo Credits: Canva

Note on Style

Image Filtering

Style is an important part of CS106A
Descriptive variable names
Decomposition can be super duper useful
Write inline and function header comments
Have good formatting (spacing)

Style guidelines linked here!

https://cs.stanford.edu/people/nick/py/python-style1.html
https://cs.stanford.edu/people/nick/py/python-style1.html

Today

Image Filtering

Recap Images
Image functions, pixels
Double for-loop
Code demo

Intro PyCharm
How will we use PyCharm?
How can we run a program in PyCharm?
How can make a "bluescreen"?

Look at New Functionality
How do we make new, blank images?
How do we make two pixels the same?

Image Recap

Images Double
For LoopsImages are made of

pixels that we can
loop over with their x,
y coordinates. We can
load image files into

 variables using
Simple Image.

Double (or nested) for
loops get us all

possible x, y combos
and thus, all possible

coordinates. Thus,
we can access every

single pixel.

Pixels

0 1 2 3 4

0

1

2

3

Pixels have red,
green, and blue

attributes. We can
grab a pixel at x, y in

an image with the
 get_pixel() function.

0 1 2 3 4

0

1

2

3

Images
Images are made of pixels that we can loop over with their x, y coordinates.

We can load image files into variables using Simple Image.
0 1 2 3 4

0

1

2

3

we can now treat the image like a variable
image = SimpleImage('tree.jpg')

y

x

Pixels
Pixels have red, green, and blue attributes. We can grab a pixel at x, y in an

image with the get_pixel() function. Often we either store or change a pixel's
value. 0 1 2 3 4

0

1

2

3

x

y

we can now treat the image like a variable
image = SimpleImage('tree.jpg')
we have access to the pixel now!
pixel = image.get_pixel(4, 0)

Pixels
We can store and change a pixel's value.

we can now treat the image like a variable
image = SimpleImage('tree.jpg')
we have access to the pixel now!
pixel = image.get_pixel(4, 0)
we can change the pixel's values
pixel.red = 255
pixel.green = 189
pixel.blue = 89

0 1 2 3 4

0

1

2

3

0 1 2 3 4

0

1

2

3

Double For Loop
What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')

0 1 2 3 4

0

1

2

3

y

x

0 1 2 3 4

0

1

2

3

Double For Loop
What if we wanted to go through all of the pixels and half their color?

y

x

image = SimpleImage('tree.jpg')
for y in range(0, image.height): # is 4
 for x in range(0, image.width): # is 5

0 1 2 3 4

0

1

2

3

Double For Loop
What if we wanted to go through all of the pixels and half their color?

y

x

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5

Double For Loop
What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)

0 1 2 3 4

0

1

2

3

y

x

Double For Loop
What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

0 1 2 3 4

0

1

2

3

y

x

0 1 2 3 4

0

1

2

3

 y = 0
 x = 0
 pixel at (0,0)

What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

Double For Loop

y

x

0 1 2 3 4

0

1

2

3

 y = 0
 x = 1
 pixel at (1,0)

What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

Double For Loop

y

x

0 1 2 3 4

0

1

2

3

 y = 0
 x = 2
 pixel at (2,0)

What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

Double For Loop

y

x

0 1 2 3 4

0

1

2

3

 y = 0
 x = 3
 pixel at (3,0)

What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

Double For Loop

y

x

0 1 2 3 4

0

1

2

3

 y = 0
 x = 4
 pixel at (4,0)

What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

Double For Loop

y

x

0 1 2 3 4

0

1

2

3

 y = 1
 x = 0
 pixel at (0,1)

What if we wanted to go through all of the pixels and half their color?

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

Double For Loop

y

x

0 1 2 3 4

0

1

2

3

 y = 1
 x = 1
 pixel at (1,1)

What if we wanted to go through all of the pixels and half their color?

Double For Loop

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

y

x

0 1 2 3 4

0

1

2

3

 y = 1
 x = 2
 pixel at (2,1)

What if we wanted to go through all of the pixels and half their color?

Double For Loop

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

y

x

0 1 2 3 4

0

1

2

3

 y = 1
 x = 3
 pixel at (3,1)

What if we wanted to go through all of the pixels and half their color?

Double For Loop

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

y

x

0 1 2 3 4

0

1

2

3

 y = 1
 x = 4
 pixel at (4,1)

What if we wanted to go through all of the pixels and half their color?

Double For Loop

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

y

x

0 1 2 3 4

0

1

2

3

 y = 3
 x = 4
 pixel at (4,3)

What if we wanted to go through all of the pixels and half their color?

Double For Loop

image = SimpleImage('tree.jpg')
for y in range(image.height): # is 4
 for x in range(image.width): # is 5
 pixel = image.get_pixel(x,y)
 pixel.red = pixel.red*0.5
 pixel.green = pixel.green*0.5
 pixel.blue = pixel.blue*0.5
return image

y

x

What if we wanted to go through all of the pixels and half their color?

Darker Nested

Double For Loop

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/image-nested/darker

Image Functions
image = SimpleImage(filename)
width = image.width
height = image.height
pixel = image.get_pixel(x, y)

pixel.red, pixel.blue, pixel.green
pixel.red = 255 # set pixel to exact color

Pixel Attributes and Functionality

New
Functionality

Image Functions
image = SimpleImage(filename)
out = SimpleImage.blank(width, height)
width = image.width
height = image.height
pixel = image.get_pixel(x, y)

pixel.red, pixel.blue, pixel.green
pixel.red = 255 # set pixel to exact color
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

Pixel Attributes and Functionality

New Image Functions
image = SimpleImage(filename)
out = SimpleImage.blank(width, height)

Create a blank image of custom width, height
out = SimpleImage.blank(5, 4)

New Image Functions
image = SimpleImage(filename)
out = SimpleImage.blank(width, height)

Create a blank image of custom width, height
out = SimpleImage.blank(5, 4)

0 1 2 3 4

0

1

2

3

x

y

image = SimpleImage('tree.jpg')
width = image.width
height = image.height
Create a blank image twice as wide as the OG
out = SimpleImage.blank(width*2, height)

new image
twice as wide and BLANK

0

1

2

3

5 6 7 8 90 1 2 3 4

New Image Functions
image = SimpleImage(filename)
out = SimpleImage.blank(width, height)

original

0 1 2 3 4

0

1

2

3

GOAL: Set one pixel to another pixel's value

New Pixel Functionality

Make

0 1 2 3 4

0

1

2

3

0

1

2

3

5 6 7 8 90 1 2 3 4

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

GOAL: Set one pixel to another pixel's value
image = SimpleImage('tree.jpg')# get OG image

New Pixel Functionality

0 1 2 3 4

0

1

2

3

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

GOAL: Set one pixel to another pixel's value
image = SimpleImage('tree.jpg')# get OG image
out = SimpleImage.blank(10, 4) # create out

New Pixel Functionality

0 1 2 3 4

0

1

2

3

0

1

2

3

5 6 7 8 90 1 2 3 4

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

GOAL: Set one pixel to another pixel's value
image = SimpleImage('tree.jpg')# get OG image
out = SimpleImage.blank(10, 4) # create out
pixel = image.get_pixel(4,0)# get original pixel

New Pixel Functionality

pixel

0 1 2 3 4

0

1

2

3

0

1

2

3

5 6 7 8 90 1 2 3 4

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

GOAL: Set one pixel to another pixel's value
image = SimpleImage('tree.jpg')# get OG image
out = SimpleImage.blank(10, 4) # create out
pixel = image.get_pixel(4,0)# get original pixel
pixel_out = out.get_pixel(0,0) # get blank pixel

New Pixel Functionality

0

1

2

3

5 6 7 8 90 1 2 3 4

pixel pixel
_out

0 1 2 3 4

0

1

2

3

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

GOAL: Set one pixel to another pixel's value
image = SimpleImage('tree.jpg')# get OG image
out = SimpleImage.blank(10, 4) # create out
pixel = image.get_pixel(4,0)# get original pixel
pixel_out = out.get_pixel(0,0) # get blank pixel

New Pixel Functionality

0

1

2

3

5 6 7 8 90 1 2 3 4

Makepixel

0 1 2 3 4

0

1

2

3

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

GOAL: Set one pixel to another pixel's value
set blank pixel to our original pixel's value
pixel_out.red = pixel.red
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

R: 255
G: 189
B: 89

R: 255
G: 255
B: 255

New Pixel Functionality
pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

R: 255
G: 189
B: 89

R: 255
G: 189
B: 89

New Pixel Functionality

GOAL: Set one pixel to another pixel's value
set blank pixel to our original pixel's value
pixel_out.red = pixel.red
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

pixel.red, pixel.blue, pixel.green
pixel.red = 255
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

New Pixel Functionality

5 6 7 8 9

0

1

2

3

0 1 2 3 4

GOAL: Set one pixel to another pixel's value
Achieved :)!

0 1 2 3 4

0

1

2

3

Creating an Out Image

Editing the Same Image

New image that now
has margins

New image that's now
flipped

New image that's now
doubled

Image Filtering

General Steps: Creating an Out Image
Step 1: Create a new blank

image based on original image
Step 2: If margins, loop over

new image to create

Step 3: Loop over the original
image and find corresponding

pixel(s) in the new image

Step 4: Set corresponding new
pixel values to old ones

(x, y) -> (x + 1, y)

Aqua stripe problem

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/image/nested-aqua-stripe

def aqua_stripe(filename):
 image = SimpleImage(filename)

Step 1: Create a new blank image based on
original image

0 49
0

39

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)

Step 1: Create a new blank image based on
original image

0 49
0

39

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)

Step 1: Create a new blank image based on
original image

0 49
0

39

0 59
0

39

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)

Step 2: If margins, loop over and create in
the new image

0 49
0

39

0 59
0

39

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)

Step 2: If margins, loop over and create in
the new image

0 49
0

39

0.........9 59
0

39

10

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10): # only some has aqua

Step 2: If margins, loop over and create in
the new image

0 49
0

39

0.........9 59
0

39

10

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10): # only some has aqua
 pixel_out = out.get_pixel(x, y)

Step 2: If margins, loop over and create in
the new image

0 49
0

39

0.........9 59
0

39

10

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10): # only some has aqua
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0

Step 2: If margins, loop over and create in
the new image

0 49
0

39

0.........9 59
0

39

10

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10): # only some has aqua
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0

Step 2: If margins, loop over and create in
the new image

0 49
0

39

0.........9 59
0

39

10

0 49
0

39

0...9 59
0

39

10

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10): # only some has aqua
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0 49
0

39

0...9 59
0

39

10

0, 0
5, 10
49, 0

Let's trace the journey of a
single pixel!

image out

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0, 0
5, 10
49, 0

10, 0

Let's trace the journey of a
single pixel!

image out

0 49
0

39

0...9 59
0

39

10

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0, 0
5, 10
49, 0

10, 0

Let's trace the journey of a
single pixel!

image out

0 49
0

39

0...9 59
0

39

10

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0, 0
5, 10
49, 0

10, 0
15, 10

Let's trace the journey of a
single pixel!

image out

0 49
0

39

0...9 59
0

39

10

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0, 0
5, 10
49, 0

10, 0
15, 10

Let's trace the journey of a
single pixel!

image out

0 49
0

39

0...9 59
0

39

10

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0, 0
5, 10
49, 0

10, 0
15, 10
59, 0

Let's trace the journey of a
single pixel!

image out

0 49
0

39

0...9 59
0

39

10

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

0, 0
5, 10
49, 0
x, y

10, 0
15, 10
59, 0

x + 10, y

Let's trace the journey of a
single pixel!

image out

0 49
0

39

0...9 59
0

39

10

Step 3: Loop over the original image to find
corresponding pixel(s) in the new image

def aqua_stripe(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 # creates BLANK image with proper dimensions
 out = SimpleImage.blank(width + 10, height)
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10)

0 49
0

39

0...9 59
0

39

10

def aqua_stripe(filename):
 ...
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)

 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

0 49
0

39

0...9 59
0

39

10

Step 4: Set corresponding new pixel values
to old ones

Pixel: (0,0)
Out: (10, 0)

def aqua_stripe(filename):
 ...
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)

 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

0 49
0

39

0...9 59
0

39

10

Step 4: Set corresponding new pixel values
to old ones

Pixel: (1,0)
Out: (11, 0)

def aqua_stripe(filename):
 ...
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)

 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

0 49
0

39

0...9 59
0

39

10

Step 4: Set corresponding new pixel values
to old ones

Pixel: (49,39)
Out: (59, 39)

Whole Solution
def aqua_strip(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10):
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)
 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

Whole Solution
def aqua_strip(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10):
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)
 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

Whole Solution
def aqua_strip(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10):
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)
 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

def aqua_strip(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10):
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)
 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

Whole Solution

Whole Solution
def aqua_strip(filename):
 image = SimpleImage(filename)
 width = image.width
 height = image.height
 out = SimpleImage.blank(width + 10, height)
 for y in range(out.height):
 for x in range(10):
 pixel_out = out.get_pixel(x, y)
 pixel_out.red = 0
 for y in range(height):
 for x in range(width):
 pixel = image.get_pixel(x, y)
 pixel_out = out.get_pixel(x + 10, y)
 pixel_out.red = pixel.red
 pixel_out.green = pixel.green
 pixel_out.blue = pixel.blue
 return out

Mirror2

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/image-shift/mirror2
https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/image-shift/mirror2

A Quick Note on Image Flipping

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

Flipping vertically(y)

Flipping horizontally (x)

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out
0,0
0,2
1,2
2,0
3,0
4,2

4,0
4,2
3,2
2,0
1,0
0,2

Flipping Horizontally

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

T

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out
0,0
0,2
1,2
2,0
3,0
4,2
x, y

4,0
4,2
3,2
2,0
1,0
0,2
?, ?

Flipping Horizontally

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out
0,0
0,2
1,2
2,0
3,0
4,2
x, y

4,0
4,2
3,2
2,0
1,0
0,2
?, y

Flipping Horizontally

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out
0,0
0,2
1,2
2,0
3,0
4,2
x, y

4,0
4,2
3,2
2,0
1,0
0,2
?, y

Flipping Horizontally

edge coordinate - x

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out
0,0
0,2
1,2
2,0
3,0
4,2
x, y

4,0
4,2
3,2
2,0
1,0
0,2
?, y

Flipping Horizontally

edge coordinate - x
(out.width - 1) - x

A

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

image: (0,0)
out: (4,0)

A Quick Note on Image Flipping

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out

Flipping Horizontally

0 1 2 3 4

0

1

2

3

B A

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out

Flipping Horizontally

A

0 1 2 3 4

0

1

2

3

image: (1,0)
out: (3,0)

C B A

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out

Flipping Horizontally

A

0 1 2 3 4

0

1

2

3

image: (2,0)
out: (2,0)

D C B A

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out

Flipping Horizontally

A0

1

2

3

image: (3,0)
out: (1,0)

0 1 2 3 4

E D C B A

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out

Flipping Horizontally

A

0 1 2 3 4

0

1

2

3

image: (4,0)
out: (0,0)

A Quick Note on Image Flipping

K

A

L

 B C D

T

O

E

O

E D C

L

B

K

A

0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

image out

Flipping Horizontally

A

O

E D C

L

B

K

A

0 1 2 3 4

0

1

2

3

image: (4,3)
out: (0,3)

Image Functions
image = SimpleImage(filename)
out = SimpleImage.blank(width, height)
width = image.width
height = image.height
pixel = image.get_pixel(x, y)

pixel.red, pixel.blue, pixel.green
pixel.red = 255 # set pixel to color
pixel_out.red = pixel.red # assuming pixel_out
pixel_out.green = pixel.green
pixel_out.blue = pixel.blue

Pixel Attributes and Functionality

Image Problems Old Image Filtering
New Image Creation

PyCharm!

Tour of PyCharm
Files
Command Line
Running the Code in our File
Adding inputs from terminal
Bluescreen example

An image with a greenscreen

Greenscreen Explanation

+

A cool background

Photo Credits: TLDump, YouTube and Unsplash

An image with a cool background

=

An image with a greenscreen

Greenscreen Explanation

+

A cool background

Photo Credits: TLDump, YouTube and Unsplash

#if front has certain amount of green (supergreen)
 #replace with back(ground) image

front back

=

front
An image with a cool background

An image with a greenscreen

Greenscreen Explanation

+

A cool background

Photo Credits: TLDump, YouTube and Unsplash

#if front pixel is "supergreen"
 #replace with back pixel

front back

=

front
An image with a cool background

An image with a bluescreen

Bluescreen Explanation

+

A cool background

Photo Credits: Unsplash

front back

#if front pixel is "superblue"
 #replace with back pixel

=

front
An image with a cool background

What might "superblue" look like?
Bluescreen Explanation

What might "superblue" look like?
Bluescreen Explanation

Significantly bluer than average, relative to other colors

0

255

superblue pixel

pixel average: (pixel.red + pixel.blue + pixel.green)//3

0

255

white pixel

0

255

superblue pixel

0

255

What might "superblue" look like?
Bluescreen Explanation

the higher our number, the less
blue gets replaced (i.e. it is
more selective/more "bluey")

Significantly bluer than average, relative to other colors

fine tuning w average

pixel average: (pixel.red + pixel.blue + pixel.green)//3

Pseudocode of Algorithm
Front image has special color in back
Back image is special background

Loop through front image
 #if front pixel is "superblue"
 #replace with back pixel

return front image

Bluescreen Algorithm

This is called a Chroma Key!

Given we have the two filenames of front and back, how might
we create a "bluescreen", filtering for pixels that have an
abnormally high amount of blue?

https://en.wikipedia.org/wiki/Chroma_key

Let's Code it Up!
(Download zip from website!)

front = SimpleImage(front_filename)
back = SimpleImage(back_filename)

for y in range(front.height):
 for x in range(front.width):
 pixel = front.get_pixel(x, y)
 # if front images have more than (weighted) average blue
 avg = (pixel.red + pixel.blue + pixel.green)//3

 # lower average threshold = easier to get rid of blue
 if pixel.blue > avg*0.9: # can manipulate weight
 back_pixel = back.get_pixel(x,y)
 pixel.red = back_pixel.red
 pixel.green = back_pixel.green
 pixel.blue = back_pixel.blue # BACK replaces FRONT

return front # front has been modified

Solution

Recap

Image Filtering

PyCharm

venture beyond the
experimental server into
PyCharm
how to use the command
line
command line + args
bluescreen image
example

PyCharm

Today, we talked about and learned how to...

create a new, blank image
of custom dimensions
create an out image from
an original image
copying pixel values over
code aqua stripe (mirror1,
mirror2) examples
make an out image from
original image

Images and Pixels

THE END

