
Frankie Cerkvenik, CS106A, 2023

Params, Returns, Odds and
Ends

Looking at the big picture (SimpleImage?) today!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assignment 1 is due tonight (grace period extends to
tomorrow night)

- Assignment 2 is released! It is due next Friday, July 14th

- Ecy and Frankieʼs OH will be in Gates 307, not 303

- The time for midterm/final conflict scheduling is over! If
you havenʼt reached out, you must take the midterm and
final during the scheduled windows!

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Quick recap: Where we are with Python
- What Python do we know?
- How do we run our Python programs?

- Introducing: Parameters and returns
- Solidify decomposition
- Learn about how functions take in information
- Learn about the return statement

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The things weʼve learned so far can be broken down into:

- Code we know how to write

- Code we know how to run

- (we are a little bit better at writing code than running
it right now)

Recap: Where we are

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Code we know how to write
while #condition:
 # code that loops
code that doesn’t loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Code we know how to write
while #condition:
 # code that loops

if #condition:
 # code that runs if condition is True

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Code we know how to write
while #condition:
 # code that loops

if #condition:
 # code that runs if condition is True

if #condition:
 # block 1 runs if condition is True
else:
 # block 2 runs if condition is False

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Code we know how to write
while #condition:
 # code that loops

if #condition:
 # code that runs if condition is True

if #condition:
 # block 1 runs if condition is True
else:
 # block 2 runs if condition is False

for var_name in range(start_num, end_num):
code that loops

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

If we donʼt know the number of times to loop, but we know
how to check if we should stop:

If we know the number of times we need to loop:

Bonus with for loop: var_name tells you which loop
iteration you are on!

Which loop?

while #condition:
 # code that loops

for var_name in range(start_num, end_num):
code that loops

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The classic image loop

row by row
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)

col by col
for x in range(0, image.width):

for y in range(0, image.height):
pixel = image.get_pixel(x, y)

Do inner loop (a loop through one col) for every col

Do inner loop (a loop through one row) for every row

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Variables

Variables store a value, and can change the value they store

color = 'red' # default color to ‘red’
if not bit.get_color() == None:

conditionally change value of color
color = bit.get_color()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Variables

for x in range(0, image.width):
pixel = image.get_pixel(x, 0)

Variables store a value, and can change the value they store

color = 'red' # default color to ‘red’
if not bit.get_color() == None:

conditionally change value of color
color = bit.get_color()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- x is a variable whose value changes with each loop
iteration

- pixel is a variable that we change every time we loop
- 0 is just a value, not a variable

Variables

for x in range(0, image.width):
pixel = image.get_pixel(x, 0)

Variables store a value, and can change the value they store

color = 'red' # default color to ‘red’
if not bit.get_color() == None:

conditionally change value of color
color = bit.get_color()

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The experimental server: all you need to do is open a
problem, write some code and hit Run!
- Good for practice problems
- Get used to Python syntax
- Bit lives in the experimental server :)

Running Code

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The experimental server: all you need to do is open a
problem, write some code and hit Run!
- Good for practice problems
- Get used to Python syntax
- Bit lives in the experimental server :)

- Pycharm: you need to download Pycharm, also
download some Python starter code, then open that
folder in Pycharm
- Can write and run any code you want
- Make big programs!

Running Code

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Make sure you have Pycharm downloaded according to
the handout (linked on website)

2. Download some starter code (like todayʼs lecture code!)

3. Open that folder in Pycharm

4. Open the Terminal (bottom left)

5. Type in python3 filename.py [maybe more
info] and hit enter to run the code in filename.py

Pycharm Step by Step

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

1. Make sure you have Pycharm downloaded according to
the handout (linked on website)

2. Download some starter code (like todayʼs lecture code!)
3. Open that folder in Pycharm
4. Open the Terminal (bottom left)
5. Type in python3 filename.py [maybe more

info] and hit enter to run the code in filename.py

- The “maybe more info” is usually something like a
filename or number

- We will learn more about this later, for now we will
always tell you what to put into Terminal

Pycharm Step by Step

Pycharm code demo
rgb-ify

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- A lot like the not keyword - use it (and even combine with
not) to build more complex conditions

- It means what you think it does!

and keyword for conditions

if #condition1 and #condition1:
 # code that runs only if
 # condition1 and condition2 are True

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- A lot like the not keyword - use it (and even combine with
not) to build more complex conditions

- It means what you think it does!

and keyword for conditions...also or

if #condition1 and #condition2:
 # code that runs only if
 # condition1 and condition2 are True

if #condition1 or #condition2:
 # code that runs if condition1 is True
 # or if condition2 is True, or both!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Weʼve seen how to define helper functions for Bit:
Revisiting Decomp

def helper_function(bit):
must “take in” bit

def main_bit_problem(filename):
required first line
bit = Bit(filename)
helper_function(bit) # must “pass in” bit

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

helper_function “takes” in bit as a parameter. This is
how main_bit_problem can communicate with

helper_function

A closer look at parameters

def helper_function(bit):
must “take in” bit

def main_bit_problem(filename):
required first line
bit = Bit(filename)
helper_function(bit) # must “pass in” bit

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify
def rgb_ify(filename):

image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
if pixel.red > pixel.green and pixel.red > pixel.blue:

pixel.red = 255
pixel.green = 0
pixel.blue = 0

if pixel.green > pixel.red and pixel.green> pixel.blue:

pixel.red = 255
pixel.green = 0
pixel.blue = 0 . . .

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify
def change_red(???):

given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify
def change_red(any_pixel):

given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify
def change_red(any_pixel):

given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify
def change_red(any_pixel):

given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def change_red(any_pixel):
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
change_red(pixel) does exactly this
any_pixel = pixel
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Run rgb_ify(‘apple_bush.jpg’)

def change_red(any_pixel):
given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

x = 0, y = 0
pixel = RGB(115, 55, 18) at (0, 0)

def change_red(any_pixel):
given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

x = 0, y = 0
pixel = RGB(115, 55, 18) at (0, 0)
any_pixel = RGB(115, 55, 18) at (0, 0)

def change_red(any_pixel):
given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

x = 0, y = 0
pixel = RGB(115, 55, 18) at (0, 0)
any_pixel = RGB(115, 55, 18) at (0, 0)

def change_red(any_pixel):
given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
any_pixel = RGB(255, 55, 18) at (0, 0)

def change_red(any_pixel):
given a pixel, change its red value to be 255
if it is the dominant color, otherwise 0
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

any_pixel.red = 255
else:

any_pixel.red = 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use decomp here to change pixel
change_red(pixel)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023

Modify rgb_ify

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- In change_red, we modified the pixel, and that how
we communicated back to the calling function what we
did

- The return keyword is another way to do this
- We can return values from helper function and collect

those values in the calling function

Return values

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify with return values
def get_red(any_pixel):

given a pixel, determine what its red value should be
(either 0 or 255) and return that value

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
save return value of get_red in pixel.red

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify with return values
def get_red(any_pixel):

given a pixel, determine what its red value should be
(either 0 or 255) and return that value

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
save return value of get_red in pixel.red
pixel.red = get_red(pixel)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Decomposing RGB-ify with return values

def get_red(any_pixel):
given a pixel, determine what its red value should be
(either 0 or 255) and return that value
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

return 255
else:

return 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
save return value of get_red in pixel.red
pixel.red = get_red(pixel)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def get_red(any_pixel):
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

return 255
else:

return 0

def rgb_ify(filename):
image = SimpleImage(filename)
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
pixel.red = get_red(pixel) does exactly this
any_pixel = pixel
if any_pixel.red > any_pixel.green and any_pixel.red > pixel.blue:

return_value = 255
else:

return_value = 0
pixel.red = return_value

Frankie Cerkvenik, CS106A, 2023

Modify rgb_ify again!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Modifying vs moving

x = 0, y = 0
pixel = RGB(115, 55, 18) at (0, 0)
any_pixel = RGB(115, 55, 18) at (0, 0)

0 1 2

0

1

A “copy” of a pixel (and most “large” variable types) is
really a copy of a pointer to the original item

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Modifying vs moving

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
any_pixel = RGB(255, 55, 18) at (0, 0)

any_pixel.red = 255

0 1 2

0

1

A “copy” of a pixel (and most “large” variable types) is
really a copy of a pointer to the original item

Modifying an attribute of the copy modifies that attribute
in the original - that change will persist

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

A “copy” of a pixel (and most “large” variable types) is
really a copy of a pointer to the original item

Modifying an attribute of the copy modifies that attribute
in the original - that change will persist

Moving the copy to point to a different pixel will not
change where the original points - this change wonʼt

persist

Modifying vs moving

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
any_pixel = RGB(255, 55, 18) at (0, 0)

any_pixel = some_other_pixel

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Write the function copy_last_pixel(filename), takes the
image specified by filename and changes every pixel to
look like the bottom-right (last) pixel

- Decompose copying one pixel

copy_last_pixel

0 1 2

0

1

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(???):
given two pixels, make the first pixel
the same as the second pixel

def copy_last_pixel(filename):

image = SimpleImage(filename)
first: save last pixel

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(???):
given two pixels, make the first pixel
the same as the second pixel

def copy_last_pixel(filename):

image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(???):
given two pixels, make the first pixel
the same as the second pixel

def copy_last_pixel(filename):

image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(???)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel

def copy_last_pixel(filename):

image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel
pixel_1 = pixel_2 # first attempt

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel
pixel_1 = pixel_2 # first attempt

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel
pixel_1 = pixel_2 # first attempt

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
pixel_1 = RGB(255, 55, 18) at (0, 0)
pixel_2 = RGB(0, 255, 0) at (2, 2)
last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel
pixel_1 = pixel_2 # first attempt

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
pixel_1 = RGB(255, 55, 18) at (0, 0)
pixel_2 = RGB(0, 255, 0) at (2, 2)
last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel
pixel_1 = pixel_2 # first attempt

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 1, y = 0
pixel = RGB(255, 55, 18) at (0, 0)

last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
given two pixels, make the first pixel
the same as the second pixel
pixel_1 = pixel_2 # first attempt

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 1, y = 0
pixel = RGB(255, 55, 18) at (0, 0)

last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
#fix: modify not move
pixel_1.red = pixel_2.red
pixel_1.green = pixel_2.green
pixel_1.blue = pixel_2.blue

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

Modify donʼt move in helpers!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
pixel_1.red = pixel_2.red
pixel_1.green = pixel_2.green
pixel_1.blue = pixel_2.blue

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 0, y = 0
pixel = RGB(255, 55, 18) at (0, 0)
pixel_1 = RGB(255, 55, 18) at (0, 0)
pixel_2 = RGB(0, 255, 0) at (2, 2)
last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
pixel_1.red = pixel_2.red
pixel_1.green = pixel_2.green
pixel_1.blue = pixel_2.blue

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 0, y = 0
pixel = RGB(0, 55, 18) at (0, 0)
pixel_1 = RGB(0, 55, 18) at (0, 0)
pixel_2 = RGB(0, 255, 0) at (2, 2)
last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def copy_pixel(pixel_1, pixel_2):
pixel_1.red = pixel_2.red
pixel_1.green = pixel_2.green
pixel_1.blue = pixel_2.blue

def copy_last_pixel(filename):
image = SimpleImage(filename)
last_pixel = image.get_pixel(image.width - 1, image.height - 1)

loop through every pixel and copy the last pixel to it
for y in range(0, image.height):

for x in range(0, image.width):
pixel = image.get_pixel(x, y)
use our decomped helper!
copy_pixel(pixel, last_pixel)

x = 0, y = 0
pixel = RGB(0, 55, 18) at (0, 0)
pixel_1 = RGB(0, 55, 18) at (0, 0)
pixel_2 = RGB(0, 255, 0) at (2, 2)
last_pixel = RGB(0, 255, 0) at (2, 2)

0 1 2

0

1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- You may modify attributes of parameters in helper
functions, and those changes will persist

- You may not “move” or set parameters equal to other
values - those changes will not persist

Recap: “Changing” parameters in helpers

parameter.attribute = something ✅✅✅

parameter = something 🚫🚫🚫

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Given parameters filename and left, create an image
from filename with the left% of the left side of the image
darker

- We can make a pixel darker by halving the RGB values in
the pixel

(If time) Experimental server practice:
darker_left

Frankie Cerkvenik, CS106A, 2023

Darker Left

https://wopr-service-qbrbcbuzwa-uw.a.run.app/make/image-nested/darker-left

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Most of the variables we have worked with have been
pixels and images

- They can also be numbers!

- They can also be boolean values (True/False)

- They can also be any other type of value (stay tuned!)

Moving away from images

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Recall: Variables as numbers
 def variable_num_example(filename):

x = 3 # numbers without decimal are “ints”
y = 8.0 # numbers with decimal are “floats”

math is math
 sum = x + y # sum is 11

prod = x * y # prod is 24
diff = x - y # diff is -5

regular division
quotient = y / x # quotient is 2.6666

int division
int_quotioent = y // x
int_quotient is 2, // truncates decimal

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The print function takes in (as a parameter) something
to print

- It displays what you passed in on the Terminal!
- Works best with simpler types, like:

- Ints
- Floats
- Anything in quotes, like “hello” (we call these

strings)
- Printing is not the same as returning

Introducing: The print function

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The print function takes in (as a parameter) something
to print

- It displays what you passed in on the Terminal!
- Works best with simpler types, like:

- Ints
- Floats
- Anything in quotes, like “hello” (we call these

strings)
- Printing is not the same as returning

Introducing: The print function

 def variable_num_example(filename):
x = 3
print(x) # displays 3
print(“hello world”) # displays hello world

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Letʼs write a function, factorial_average(num1,
num2), which takes in two numbers, prints their
factorials, and then prints the average of their factorials.

- Decompose “calculate the factorial of a number” and
“calculate the average of a number” into two helper
functions

- Side note: donʼt worry if this goes fast, we will revisit it on
Tuesday!

factorial_average

Frankie Cerkvenik, CS106A, 2023

factorial_avg
(in pycharm)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1
y = 3

Console prints:
1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1
y = 3 num2 = 3

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
???

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

🚫🚫The change does not persist 🚫🚫
“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The change happens to num1, not x

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2
print(num1)

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
1.5

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Why? Copies!

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

A copy of an int is literally a different item
Changing the copy (num1) wonʼt change the original (x)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Parameters are how helper functions receive information
from the functions that call them

- If you modify an attribute of a parameter, that change
will persist to the calling function, but if you move it
(param = other_thing), that change wonʼt persist

- Returns are how callers receive information back from
the functions they call

- All the code weʼve been writing works with numbers too
:)

Recap

