
Frankie Cerkvenik, CS106A, 2023

Lists
Its List oʼclock

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assignment 2 is released! Due Friday midnight, grace
period extends to Saturday midnight

- You should be having/have had your first IGs this week
for assignment 1 grading- reach out to your section
leader if you donʼt know how to schedule IGs

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Solidify parameters and returns
- The print statement exists!
- Do factorial_avg
- Introduce doctests

- Introducing: Lists
- A list variable
- Traversing a list and the len() function
- Modifying a list: indexing, append() and pop()
- A smorgasbord of list functions
- Lists as parameters

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Most of the variables we have worked with have been
pixels and images

- They can also be numbers!

- They can also be boolean values (True/False)

- They can also be any other type of value (stay tuned!)

Moving away from images

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Recall: Variables as numbers
 def variable_num_example(filename):

x = 3 # numbers without decimal are “ints”
y = 8.0 # numbers with decimal are “floats”

math is math
 sum = x + y # sum is 11

prod = x * y # prod is 24
diff = x - y # diff is -5

regular division
quotient = y / x # quotient is 2.6666

int division
int_quotioent = y // x
int_quotient is 2, // truncates decimal

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The print function takes in (as a parameter) something
to print

- It displays what you passed in on the Terminal!
- Works best with simpler types, like:

- Ints
- Floats
- Anything in quotes, like “hello” (we call these

strings)
- Printing is not the same as returning

Introducing: The print function

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The print function takes in (as a parameter) something
to print

- It displays what you passed in on the Terminal!
- Works best with simpler types, like:

- Ints
- Floats
- Anything in quotes, like “hello” (we call these

strings)
- Printing is not the same as returning

Introducing: The print function

 def variable_num_example(filename):
x = 3
print(x) # displays 3
print(“hello world”) # displays hello world

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Letʼs write a function, factorial_average(num1,
num2), which takes in two numbers, prints their
factorials, and then prints the average of their factorials.

- Decompose “calculate the factorial of a number” and
“calculate the average of a number” into two helper
functions

factorial_average

Frankie Cerkvenik, CS106A, 2023

factorial_avg
(in pycharm)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1
y = 3

Console prints:
1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1
y = 3 num2 = 3

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
???

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

🚫🚫The change does not persist 🚫🚫
“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

The change happens to num1, not x

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2
print(num1)

 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
1.5

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Why? Copies!

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

A copy of an int is literally a different item
Changing the copy (num1) wonʼt change the original (x)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Note: “Catching” return values
def factorial(num):

result = 1
for i in range(1, num + 1):

result = result * i
return result

def factorial_avg(num1, num2):
this is different

factorial_1 = factorial(num1)
from this

factorial(num2)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Note: “Catching” return values
def factorial(num):

result = 1
for i in range(1, num + 1):

result = result * i
return result

def factorial_avg(num1, num2):
the return value of factorial(num1) is saved
in the variable facotorial_1

factorial_1 = factorial(num1)

the return value of factorial(num2) dies!

factorial(num2) # we have no way of using it

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Testing functions: doctests
def factorial(num):

"""
This function returns the factorial of num
Doctests:
>>> factorial(3)
6
>>> factorial(0)
1
"""
result = 1
for i in range(1, num + 1):

result = result * i
return result

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- In Pycharm, doctests allow you to test functions one at a
time

- Right-click on the function and hit ʻrun Doctest funcʼ to
run the tests!

text following >>> is code to run
text without >>> is expected output of previous code

Doctests

def func_name(param1, param2):
"""
Function header comment
>>> func_name(0, 1)
1
"""

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We add doctests to our functions so we only have to
debug one function at a time

- If we always had to debug an entire program, we would
have a hard time knowing where to start

- Testing a helper function before using it is good practice

Why test?

Frankie Cerkvenik, CS106A, 2023

Code Demo:
buggy_factorial_average

Its buggy!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Solidify parameters and returns
- Do factorial_avg
- The print statement exists!
- Introduce doctests

- Introducing: Lists
- A list variable
- Traversing a list and the len() function
- Modifying a list: indexing, append() and pop()
- A smorgasbord of list functions
- Lists as parameters

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We have seen variables of different “Types”
- Int:

x_int = 5
- Float:

y_float = 3.5
- String:

color = ‘green’
- Objects

- SimpleImage
image = SimpleImage(filename)

- Pixel
pixel = image.get_pixel(0, 0)

Aside: Types

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

We have seen variables of different “Types”
- Int:

x_int = 5
- Float:

y_float = 3.5
- String:

color = ‘green’
- Objects

- SimpleImage
image = SimpleImage(filename)

- Pixel
pixel = image.get_pixel(0, 0)

- New: List
- list_var = [1, 2, 3]

Aside: Types

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

What is a List?
• A list is way to keep track of an ordered collection

of items
– Items in the list are called "elements"

– Ordered: We can refer to elements by their position

– Collection: lists can contain multiple items

• The list dynamically adjusts its size as elements are
added or removed

• Lists have a lot of built-in functionality to make using
them more straightforward

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Show me some lists!
• Creating lists

– Lists start/end with brackets. Elements separated by
commas.

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Show me some lists!
• List with one element is not the same as the element

– Could try this out:

def main():
list_one = [1]
one = 1
print(list_one == one)

Terminal:
False

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are
indexed
– Indexes start from 0

letters

Accessing Elements of List

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are
indexed
– Indexes start from 0

letters

• Access individual elements:
letters[0] is 'a'
letters[4] is 'e'

Accessing Elements of List

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are
indexed
– Indexes start from 0

letters

• Can set individual elements like regular variable:
letters[0] = 'x'

Accessing Elements of List

'x' 'b' 'c' 'd' 'e'

0 1 2 3 4

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Getting Length of a List
• Consider the following list:

letters = ['a', 'b', 'c', 'd', 'e']

• Can get length of list with len function:

len(letters) is 5

• The last item in letters is at index len(letters) - 1

last_letter = letters[len(letters) - 1)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Iterating through a list
We can iterate through every element in a list using our

handy-dandy for-loop!

Terminal:
0 -> a
1 -> b
2 -> c
3 -> d
4 -> e

def main():
 letters = ['a', 'b', 'c', 'd', 'e']
 for i in range(len(letters)):
 print(i, "->", letters[i])

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Pop Quiz
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = ???

len(empty_list) = ??

mix[0] = ??

strs[len(strs) - 1] = ??

empty_list[0] = ??

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Pop Quiz
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = ??

mix[0] = ??

strs[len(strs) - 1] = ??

empty_list[0] = ??

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Pop Quiz
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = 0

mix[0] = ??

strs[len(strs) - 1] = ??

empty_list[0] = ??

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Pop Quiz
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = 0

mix[0] = 4

strs[len(strs) - 1] = ‘list’

empty_list[0] = ??

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Pop Quiz
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = 0

mix[0] = 4

strs[len(strs) - 1] = ‘list’

empty_list[0] IndexError: list index out of range

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Superpowered Indexing
• Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Superpowered Indexing
- Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

- For indexes, think of –x as the same as len(list)–x
letters[-1] is same as letters[len(letters)-1]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Superpowered Indexing
- Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

- For indexes, think of –x as the same as len(list)–x
letters[-1] is same as letters[len(letters)-1]

• How about this?

letters[6]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Superpowered Indexing
- Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

- For indexes, think of –x as the same as len(list)–x
letters[-1] is same as letters[len(letters)-1]

• How about this?

letters[6]
IndexError: list index out of range

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Building Up Lists
• Can add elements to end of list with .append

alist = [10, 20, 30]

10 20 30alist

[10, 20, 30]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can add elements to end of list with .append
alist = [10, 20, 30]
alist.append(40)

10 20 30 40alist

[10, 20, 30, 40]

Building Up Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can add elements to end of list with .append
alist = [10, 20, 30]
alist.append(40)
alist.append(50)

10 20 30 40 50alist

[10, 20, 30, 40, 50]

Building Up Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can add elements to end of list with .append
alist = [10, 20, 30]
alist.append(40)
alist.append(50)
new_list = []

10 20 30 40 50alist

[10, 20, 30, 40, 50]

new_list empty list
[]

Building Up Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can add elements to end of list with .append
alist = [10, 20, 30]
alist.append(40)
alist.append(50)
new_list = []
new_list.append('a')

10 20 30 40 50

new_list 'a'
['a']

alist

[10, 20, 30, 40, 50]

Building Up Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

10 20 30 40 50

'a' 4.3

• Can add elements to end of list with .append
alist = [10, 20, 30]
alist.append(40)
alist.append(50)
new_list = []
new_list.append('a')
new_list.append(4.3)

new_list
['a', 4.3]

alist

[10, 20, 30, 40, 50]

Building Up Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Removing Elements from Lists
• Can remove elements from end of list with .pop

– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

10 20 30 40 50alist

[10, 20, 30, 40, 50]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

10 20 30 40

[10, 20, 30, 40]

x 50

50

alist

Removing Elements from Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()

10 20 30

[10, 20, 30]

x 40

40

alist

Removing Elements from Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()

10 20

[10, 20]

x 30

30

alist

Removing Elements from Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

alist 10

[10]

x 20

20

Removing Elements from Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

alist

x 10

10

empty list
[]

Removing Elements from Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

alist

x 10

10

empty list
[]

What if we did one more?

x = alist.pop()

IndexError: pop from empty list

Donʼt do
it!

Removing Elements from Lists

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

More Fun With Lists
• Can I get a couple new lists, please?

num_list = [1, 2, 3, 4]
str_list = ['Ruth', 'John', 'Sonia']

• Printing lists:
print(num_list)
print(str_list)

[1, 2, 3, 4]
['Ruth', 'John', 'Sonia']

Terminal:

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

More Fun With Lists
• Can I get a couple new lists, please?

num_list = [1, 2, 3, 4]
str_list = ['Ruth', 'John', 'Sonia']

• Printing lists:
print(num_list)
print(str_list)

• Check to see if list is empty (empty list is like
"False")
if num_list:

print('num_list is not empty')
else:

print('num_list is empty')

[1, 2, 3, 4]
['Ruth', 'John', 'Sonia']

Terminal:

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Even More Fun With Lists
num_list = [1, 2, 3, 4]
str_list = ['Ruth', 'John', 'Sonia']

• Check to see if a list contains an element:

x = 1
if x in num_list:

do something

• General form of test (evaluates to a Boolean):

element in list

– Returns True if element is a value in list, False
otherwise

– Could use as test in a while loop too

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 1)!
• Function: list.pop(index) # pop can take parameter

– Removes (and returns) an element at specified index
fun_list = ['a', 'b', 'c', 'd']
x = fun_list.pop(2) # x will be set to 'c'

fun_list will then be ['a', 'b', 'd']

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 1)!
• Function: list.pop(index) # pop can take parameter

– Removes (and returns) an element at specified index
fun_list = ['a', 'b', 'c', 'd']
x = fun_list.pop(2) # x will be set to 'c'

fun_list will then be ['a', 'b', 'd']

• Function: list.remove(elem)
– Removes (and returns) first occurrence of element in list
another_list = ['a', 'b', 'c', 'b']
another_list.remove('b')

– another_list will then be ['a', 'c', 'b']

– ValueError if you try to remove an element that isn't in list

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 2)!

list1 = [1, 2, 3]
list2 = [4, 5]

• Function: list.extend(other_list)
– Adds all elements from other_list to list that function is called on

list1.extend(list2)

list1 will then be [1, 2, 3, 4, 5]

list2 is still [4, 5]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 2)!

list1 = [1, 2, 3]
list2 = [4, 5]

list1 = [1, 2, 3]
list2 = [4, 5]

• Function: list.extend(other_list)
– Adds all elements from other list to list that function is called on

list1.extend(list2)

list1 will then be [1, 2, 3, 4, 5]

• append is not the same as extend
– Append adds a single element, extends merges a list onto another

list1.append(list2)

list1 will then be [1, 2, 3, [4, 5]]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 3)!
• Using + operator on lists works like extend , but

creates a new list. Original lists are unchanged.

list1 = [1, 2, 3]
list2 = [4, 5]
list3 = list1 + list2

list3 will then be [1, 2, 3, 4, 5]

list1 is still [1, 2, 3] and list2 is [4, 5]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 3)!
• Using + operator on lists works like extend , but

creates a new list. Original lists are unchanged.

list1 = [1, 2, 3]
list2 = [4, 5]
list3 = list1 + list2

list3 will then be [1, 2, 3, 4, 5]

list1 is still [1, 2, 3] and list2 is [4, 5]

• Can use += operator just like extend

list1 += list2
list1 will then be [1, 2, 3, 4, 5]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 4)!
• Function: list.index(elem)

– Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'c']
i = alist.index('b') # i will be set to 1

– ValueError if you ask for index of an element that isn't in list

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Function Extravaganza (part 4)!
• Function: list.index(elem)

– Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'c']
i = alist.index('b') # i will be set to 1

– ValueError if you ask for index of an element that isn't in list

• Function: list.insert(index, elem)
– Inserts elem at the given index. Shifts all other elements down.
lecturers = ['mehran', 'amrita', 'Elyse']
lecturers.insert(1, 'frankie')

lecturers will then be

['mehran', 'frankie', 'amrita', 'Elyse']

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Looping Through List Elements
str_list = ['Ruth', 'John', 'Sonia']

• For loop using range:
for i in range(len(str_list)):

elem = str_list[i]
print(elem) Ruth

John
Sonia

Output:

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Looping Through List Elements
str_list = ['Ruth', 'John', 'Sonia']

• For loop using range:
for i in range(len(str_list)):

elem = str_list[i]
print(elem)

• We can use a new kind of loop
called a "for-each" loop
for elem in str_list:

print(elem)

• These loops both iterate over all elements of the list
– Variable elem is set to each value in list (in order)

Ruth
John
Sonia

Output:

New loop alert

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

For-Each Loop Over Lists
str_list = ['Ruth', 'John', 'Sonia']

for elem in str_list:
Body of loop
Do something with elem

• Like variable i in for loop using range(),
elem is a variable that gets updated with
each loop iteration.

• elem gets assigned to each element in the

list in turn.

This code gets
repeated once for

each element in list

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lists as Parameters
• When you pass a list as a parameter you are passing a

reference to the actual list
- In helper functions, changes to values in list persist

after function ends (just like modifying an attribute!)

Terminal: ???

def add_five(num_list):
 for i in range(len(num_list)):
 num_list[i] += 5

def main():
 values = [5, 6, 7, 8]
 add_five(values)
 print(values)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Lists as Parameters
• When you pass a list as a parameter you are passing a

reference to the actual list
- In helper functions, changes to values in list persist

after function ends (just like modifying an attribute!)

Terminal: [10, 11, 12, 13]

def add_five(num_list):
 for i in range(len(num_list)):
 num_list[i] += 5

def main():
 values = [5, 6, 7, 8]
 add_five(values)
 print(values)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

More on Lists as Parameters
• But, watch out if you create a new list in a function

– Creating a new list means you're no longer dealing with
list passed in as parameter.

– At that point you are no longer changing parameter passed in
– (This is moving, not modifying)

def create_new_list(num_list):
 num_list.append(9)
 num_list = [1, 2, 3]

def main():
 values = [5, 6, 7, 8]
 add_five(values)
 print(values)

Terminal: ???

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

More on Lists as Parameters
• But, watch out if you create a new list in a function

– Creating a new list means you're no longer dealing with
list passed in as parameter.

– At that point you are no longer changing parameter passed in
– (This is moving, not modifying)

def create_new_list(num_list):
 num_list.append(9) #modify, will persist
 num_list = [1, 2, 3] #move, wont persist

def main():
 values = [5, 6, 7, 8]
 add_five(values)
 print(values)

Terminal: [5, 6, 7, 8, 9]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Note on Loops and Lists
list = [10, 20, 30]

• For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in list

• For-each loop:

for elem in list: # Modifying local variable
elem += 1 #

#

elem - NOT the value in
the list, but a copy

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Note on Loops and Lists
list = [10, 20, 30]

• For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in list

• For-each loop:

for elem in list: # Modifying local variable
elem += 1 #

#

elem - NOT the value in
the list, but a copy

• Use for loop with range when modifying elements of list

• Use for-each loop when not modifying elements of list

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Letʼs write a function, factorial_avg_list(nums)
- Takes in a list of numbers and prints their factorials

(as a list)
- Then prints the average of all the factorials

- Decompose “make list of factorials” and “calculate the
average of a list” into two helper functions

- (if time) Try making a “return” version of “make list of
factorials” and a “modify” version

Put it together: factorial_avg_list

factorial_avg_list
In Pycharm!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Lists exist! They are indexed collections of items, and there
are many things we can do with them.

- A “move” on a parameter will not persist after the function
is over, but a “modify” will.

- Changing elements of a list is a “modify”

- Most important list functions:
- indexing (list[index] gets indexʼth item in list)
- len(list), list.append(item)

- The print function exists - it outputs text to the terminal, it
is not the same as returning

- Doctests help us test our helper functions!

Recap

