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Its List o’clock
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Housekeeping

- Assignment 2 is released! Due Friday midnight, grace
period extends to Saturday midnight

- You should be having/have had your first IGs this week
for assignment 1 grading- reach out to your section
leader if you don’t know how to schedule I1Gs
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Today

- Solidify parameters and returns
- The print statement exists!
- Do factorial_avg
- Introduce doctests

- Introducing: Lists

- Alist variable
Traversing a list and the 1en () function
Modifying a list: indexing, append () and pop ()
A smorgasbord of list functions
Lists as parameters
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Moving away from images

Most of the variables we have worked with have been
pixels and images

They can also be numbers!
They can also be boolean values (True/False)

They can also be any other type of value (stay tuned!)
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Recall: Variables as numbers

def variable num example (filename) :
X = 3 # numbers without decimal are “ints”
y = 8.0 # numbers with decimal are “floats”

# math is math

sum = X + y # sum is 11
prod X * vy # prod is 24
diff X -y # diff is -5

# regular division
quotient =y / x # quotient is 2.6666

# int division
int quoticent =y // x
# int quotient is 2, // truncates decimal
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Introducing: The print function

- Theprint function takes in (as a parameter) something
to print
- It displays what you passed in on the Terminal!
- Works best with simpler types, like:
- Ints
- Floats
- Anythingin quotes, like *thello” (we call these
strings)
- Printing is not the same as returning
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Introducing: The print function

- Theprint function takes in (as a parameter) something
to print
- It displays what you passed in on the Terminal!
- Works best with simpler types, like:
- Ints
- Floats
- Anythingin quotes, like *thello” (we call these
strings)
Printing is not the same as returning

def variable num example (filename) :
x =3
print(x) # displays 3
print (“hello world”) # displays hello world
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factorial_average

- Let’s write a function, factorial average (numl,
num?2) , which takes in two numbers, prints their
factorials, and then prints the average of their factorials.

- Decompose “calculate the factorial of a number” and
“calculate the average of a number” into two helper
functions
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factorial_avg
(in pycharm)
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“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2
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“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():

x =1
y = 3
print (x)

change numl to avg(x, y)
print (x)
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“Changing” parameters

Lets try a “change” version of compute avg

numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

def change numl to avg(numl, num2):

Variables: Console prints:
x =1 1
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“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables:
x =1 numl = 1

I
w

y = 3 num2 Stanford | ENGINEERING
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“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables:
x =1 numl = 1.5

I
w

y = 3 num2 Stanford | ENGINEERING
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“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables: Console prints:
x =1 numli—1-5 22?2

y = 3 num2—=—3 Stanford | ENGINEERING

Computer Science




“Changing” parameters
Q Q) The change does not persist O N

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables: Console prints:
x =1 nmumli—=——71-5 1
y = 3 num2—=—3 Stanford | ENGINEERING
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“Changing” parameters

The change happens to numil, not x

def change numl to avg(numl, num2):
numl = (numl + num2) / 2
print (numl)

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)

print (x)

Variables: Console prints:
x =1 numl = 1.5 1.5

I
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y = 3 num2 Stanford | ENGINEERING
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Why? Copies!

A copy of an int is literally a different item
Changing the copy (numl) won’t change the original (x)

Variables:
x =1 numl = 1.5
y = 3 num2 = 3
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Note: “Catching” return values

hef factorial (num) :

result =1

for i in range(l, num + 1):
result = result * i

return result

def factorial avg(numl, num2):
# this is different

factorial 1 = factorial (numl)
# from this

factorial (num2)
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Note: “Catching” return values

hef factorial (num) :

result =1

for i in range(l, num + 1):
result = result * i

return result

def factorial avg(numl, num2):
# the return wvalue of factorial (numl) is saved
# in the variable facotorial 1

factorial 1 = factorial (numl)

# the return value of factorial (num2) dies!'!

factorial (num2) # we have no way of using it
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Testing functions: doctests

def factorial (num) :
This function returns the factorial of num
Doctests:
>>> factorial (3)
6
>>> factorial (0)
1
result =1
for 1 in range(l, num + 1):
result = result * i
return result
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Doctests

- In Pycharm, doctests allow you to test functions one at a
time

- Right-click on the function and hit ‘run Doctest func’ to
run the tests!

def func name (paraml, param2):
Function header comment
>>> func _name (0, 1)
1

wiww

text following >>> is code to run
text without >>> is expected output of previous code
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Why test?

We add doctests to our functions so we only have to
debug one function at a time

If we always had to debug an entire program, we would
have a hard time knowing where to start

Testing a helper function before using it is good practice
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Code Demo:
buggy factorial average

Its buggy!
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- Introducing: Lists

- Alist variable
Traversing a list and the 1en () function
Modifying a list: indexing, append () and pop ()
A smorgasbord of list functions
Lists as parameters
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Aside: Types
We have seen variables of different “Types”
- Int:
X int
Float:
y float = 3.5
String;:
color = ‘green’
Objects
- Simplelmage
image = SimpleImage (filename)
- Pixel
pixel

5

image.get pixel (0, O0)
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Aside: Types

We have seen variables of different “Types”
- Int:
X int = 5
- Float:
y float = 3.5
- String:
color = ‘green’
- Objects
- Simplelmage
image = SimpleImage (filename)
- Pixel
pixel
- New: List
- list var = [1, 2, 3]

image.get pixel (0, O0)
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What is a List?

e Alist is way to keep track of an ordered collection
of items

— Items in the list are called "elements"

— Ordered: We can refer to elements by their position

— Collection: 1ists can contain multiple items

* The list dynamically adjusts its size as elements are
added or removed

* Lists have a lot of built-in functionality to make using
them more straightforward
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Show me some 1ists!
* Creating lists

— Lists start/end with brackets. Elements separated by
commas.

my list = [1, 2, 3]

reals = [4.7, -6.0, 0.22, 1.6]

strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]

empty list = []
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Show me some 11sts!

e List with one element is not the same as the element
— Could try this out:

def main() :
list one = [1]

one =1

print (list one == one)
Terminal:
False
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Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are
indexed

— Indexes start from O

letterS—> 'al 'b' 'cl 'd' lel

0 1 2 3 4
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Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are
indexed

— Indexes start from O

letterS—> 'al 'b' 'cl 'd' lel

0 1 2 3 4

e Access individual elements:
letters[0] is 'a'
letters([4] is 'e'

Stanford | ENGINEERING

Computer Science



Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are
indexed

— Indexes start from O

letterS—> 'xl 'b' 'cl 'd' lel

0 1 2 3 4

* Can set individual elements like regular variable:
letters[0] = 'x'
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Getting Length of a List

e Consider the following list:
letters = ['a', 'b', '¢', 'd', 'e']

e Can get length of list with 1Len function:
len(letters) is 5

 The lastitem in letters is at index 1len (letters) - 1
last letter = letters[len(letters) - 1)
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Iterating through a list

We can iterate through every element in a list using our
handy-dandy for-loop!

def main|() :
letters = ['a', 'b', 'e¢', 'd', 'e']
for i in range(len(letters)):
print(i, "->", letters[i])

Terminal:
0->a
1->b
2->C
3->d
4->e
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List Pop Quiz

* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = ???
len (empty list) = ??
mix[0] = 2?7
strs[len(strs) - 1] = ??

empty list]| 0] = 27 Stanford | ENGINEERING

Computer Science




List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = 3
len (empty list) = ??
mix[0] = 2?7
strs[len(strs) - 1] = ??

empty list]| 0] = 27 Stanford | ENGINEERING
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List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = 3
len(empty list) = 0
mix[0] = 2?7
strs[len(strs) - 1] = ??
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List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = 3
len(empty list) = 0
mix[0] = 4
strs[len(strs) - 1] = ‘list’

empty list]| 0] = 27 Stanford | ENGINEERING
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List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []
* Pop quiz!
len(my list) = 3
len(empty list) = 0
mix[0] = 4
strs[len(strs) - 1] = ‘list’

empty list[0] IndexError: list index out of range
_— Stanford | ENGINEERING
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Superpowered Indexing
e Can use negative index to work back from end of list

letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'

letters[-2] s 'd’
letters[-5] is 'a'
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Superpowered Indexing

- Can use negative index to work back from end of list
letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'
letters[-2] s 'd’
letters[-5] is 'a'

- For indexes, think of =x as the same as len (list)-x
letters[-1] is sameas letters[len(letters)-1]
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Superpowered Indexing

- Can use negative index to work back from end of list
letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'
letters[-2] s 'd’
letters[-5] is 'a'

- For indexes, think of =x as the same as len (list)-x
letters[-1] is sameas letters[len(letters)-1]

e How about this?
letters|[6]
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Superpowered Indexing

- Can use negative index to work back from end of list
letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'
letters[-2] s 'd’
letters[-5] is 'a'

- For indexes, think of =x as the same as len (list)-x
letters[-1] is sameas letters[len(letters)-1]

* How about this?
letters|[6]
IndexError: list index out of range
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Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]

alist ==p| 10 20 30

[10, 20, 30] Stanford | ENGINEERING

Computer Science




Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)

alist =p| 10 20 30 40
[10, 20/ 30/ 40] Stanford | ENGINEERING

Computer Science




Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)
alist.append(50)

alist =p| 10 20 30 40 50
[10, 20/ 30/ 40/ 50] Stanford | ENGINEERING

Computer Science




Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)
alist.append(50)
new list = []

new list =———p cmpty list

[]
alist=—p| 10 | 20 [ 30 | 40 | 50

[10, 20, 30, 40, 50] Stanford | ENGINEERING

Computer Science




Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)
alist.append(50)
new list = []

new list.append('a')

new list =——p | '3’
['a']
alist =—p| 10 20 30 40 50

[10, 20/ 30/ 40/ 50] Stanford | ENGINEERING

Computer Science




Building Up Lists
* Can add elements to end of list with . append

alist = [10, 20, 30]

alist.append(40)

alist.append(50)

new list = []

new list.append('a'’)

new list.append(4.3)

new list =——>| 'a' | 4.3
['a', 4.3]

alist —p| 10 20 30 40 50
[10, 20, 30, 40, 50] stanford|eNGINEERING

Computer Science




Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

alist =p| 10 20 30 40 50
[10, 20/ 30/ 40/ 50] Stanford | ENGINEERING

Computer Science




Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

X ——— 50
50

alist =—p| 10 20 30 40
[10, 20/ 30/ 40] Stanford | ENGINEERING

Computer Science




Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()

X ——— | 40
40

alist =—p| 10 20 30

[10, 20, 30] Stanford | ENGINEERING

Computer Science




Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()

X — | 30
30

alist =m=—p| 10 20
[10, 20] Stanford | ENGINEERING

Computer Science




Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

X m—— | 20
20

alist =p| 10

[ 10 ] Stanford | ENGINEERING

Computer Science




Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

X

X X X N

X —— | 10

alist.pop ()
alist.pop ()
alist.pop ()
alist.pop ()
alist.pop ()

10

alist = cmpty list

[] Stanford | ENGINEERING

Computer Science



Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

x = alist.pop() Whatif we did one more?
x = alist.pop() x = alist.pop()
X = alist.pop() IndexError: pop from empty list
x = alist.pop()
b
. e Don’t do

10 it!

alist = cmpty list
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More Fun With Lists

 Can | get a couple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

* Printing lists: Terminal
print (num list) [1, 2, 3, 4]
print(str list) ['Ruth', 'John', 'Sonia']
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More Fun With Lists

 Can | get a couple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

* Printing lists:

Terminal:
print (num list) [1, 2, 3, 4]
print(str list) ['Ruth', 'John', 'Sonia']

* Check to see if list is empty (empty list is like
"False")
if num list:
print('num list is not empty')
else:
print('num list is empty') Stanford | ENGINEERING

Computer Science




Even More Fun With Lists

num list = [1, 2, 3, 4]
str list = ['Ruth', 'John', 'Sonia']

* Check to see if a list contains an element:
x =1
if x in num list:
# do something

* General form of test (evaluates to a Boolean):
element in list

— Returns True if elementisavalueinlist, False
otherwise

— Could use as testinawhile loop too
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List Function Extravaganza (part 1)!
* Function: list.pop (index) # pop can take parameter

— Removes (and returns) an element at specified index
fun list = ['a', 'b', 'c', 'd']

x = fun list.pop(2) # x will be set to 'c'

fun list willthenbe ['a', 'b', 'd']
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List Function Extravaganza (part 1)!
* Function: list.pop (index) # pop can take parameter

— Removes (and returns) an element at specified index
fun list = ['a', 'b', 'c', 'd']
x = fun list.pop(2) # x will be set to 'c'

fun list willthenbe ['a', 'b', 'd']

* Function: list. remove (elem)

— Removes (and returns) first occurrence of element in list
another list = ['a', 'b', 'c', 'b']
another list.remove('b')

— another list willthenbe ['a', 'c', 'b']

— ValueError if you try to remove an element that isn't in list
Stanford | ENGINEERING
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List Function Extravaganza (part 2)!
* Function: list. extend (other list)

— Adds all elements from other list to list that function is called on

listl = [1, 2, 3]
list2 = [4, 5]
listl.extend(list2)

listl willthenbe [1, 2, 3, 4, 5]

list2 isstill [4, 5]
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List Function Extravaganza (part 2)!
* Function: list. extend (other list)

— Adds all elements from other list to list that function is called on

listl = [1, 2, 3]
list2 = [4, 5]
listl.extend(list2)

listl willthenbe [1, 2, 3, 4, 5]
e append is not the same as extend

— Append adds a single element, extends merges a list onto another

listl = [1, 2, 3]
list2 = [4, 5]
listl.append(list2)

listl willthenbe [1, 2, 3, [4, 5]]
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List Function Extravaganza (part 3)!

* Using + operator on lists works like extend , but
creates a new list. Original lists are unchanged.

listl [1, 2, 3]
list2 [4, 5]
list3 = 1listl + list2

list3 willthenbe [1, 2, 3, 4, 5]

listl isstill [1, 2, 3] and 1list2 is [4, 5]
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List Function Extravaganza (part 3)!

* Using + operator on lists works like extend , but
creates a new list. Original lists are unchanged.

listl [1, 2, 3]
list2 [4, 5]
list3 = 1listl + list2

list3 willthenbe [1, 2, 3, 4, 5]

listl isstill [1, 2, 3] and 1list2 is [4, 5]
 Can use += operator just like extend

listl += list2
listl willthenbe [1, 2, 3, 4, 5]
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List Function Extravaganza (part 4)!
* Function: list.index (elem)

— Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'ec']
i = alist.index('b') # i willbesettol

— ValueError if you ask for index of an element that isn't in list
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List Function Extravaganza (part 4)!

* Function: list.index (elem)
— Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'ec']
i = alist.index('b') # i willbesettol

— ValueError if you ask for index of an element that isn't in list

* Function: list.insert (index, elem)

— Inserts elem at the given index. Shifts all other elements down.
lecturers = ['mehran', 'amrita', 'Elyse']
lecturers.insert(l, 'frankie')

lecturers will then be

[ 'mehran', 'frankie', 'amrita', 'Elyse']
Stanford | ENGINEERING
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Looping Through List Elements

str list = ['Ruth', 'John',

* For loop using range:

'Sonia']

for i in range(len(str list)):

elem = str list[i]

print (elem)

Output:

Ruth
John
Sonia
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Looping Through List Elements
str list = ['Ruth', 'John', 'Sonia']

* For loop using range:
for i in range(len(str list)):
elem = str list[i]

print (elem)

. Output:
* We can use a new kind of loop [ruth
called a "for-each" loop John
for elem in str list: Sonia

print (elem)

* These loops both iterate over all elements of the list

— Variable elem is set to each value in list (in order)
Stanford | ENGINEERING
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New loop alert



For-Each Loop Over Lists
str list = ['Ruth', 'John', 'Sonia']

for elem in str_list:

# Body of loop } This code gets

# Do something with elem repeated once fc?r
each element in list

* " Like variable i in for loop using range (),
elem is a variable that gets updated with
each loop iteration.

e elem gets assigned to each element in the

list in turn.
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Lists as Parameters

e When you pass a list as a parameter you are passing a
reference to the actual list
- In helper functions, changes to values in list persist
after function ends (just like modifying an attribute!)

def add five(num list):
for i in range(len(num list)):
num list[i] += 5

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: ??? Stanford | ENGINEERING
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Lists as Parameters

e When you pass a list as a parameter you are passing a
reference to the actual list
- In helper functions, changes to values in list persist
after function ends (just like modifying an attribute!)

def add five(num list):
for i in range(len(num list)):
num list[i] += 5

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: [10, 11, 12, 13] Stanford | ENGINEERING

Computer Science



More on Lists as Parameters
 But, watch out if you create a new list in a function
- Creating a new list means you're no longer dealing with
list passed in as parameter.
- At that point you are no longer changing parameter passed in
- (This is moving, not modifying)

def create new list(num list):
num list.append(9)
num list = [1, 2, 3]

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: 222 Stanford | ENGINEERING

Computer Science




More on Lists as Parameters
 But, watch out if you create a new list in a function
- Creating a new list means you're no longer dealing with
list passed in as parameter.
- At that point you are no longer changing parameter passed in
- (This is moving, not modifying)

def create new list(num list):
num list.append(9) #modify, will persist
num list = [1, 2, 3] #move, wont persist

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: [5,6, 7, 8, 9] Stanford | ENGINEERING

Computer Science




Note on Loops and Lists
list = [10, 20, 30]

* For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in 1list

* For-each loop:

for elem in list: # Modifying local variable
elem += 1 # elem - NOT the value in

# the list, but a copy

Stanford | ENGINEERING
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Note on Loops and Lists
list = [10, 20, 30]

* For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in list

* For-each loop:

for elem in list: # Modifying local wvariable
elem += 1 # elem - NOT the value in

# the list, but a copy
e Use for loop with range when modifying elements of list

* Use for-each loop when not modifying elements of list
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Put it together: factorial avg list
- Let’s write a function, factorial avg list (nums)
- Takes in a list of numbers and prints their factorials

(as a list)
- Then prints the average of all the factorials

- Decompose “make list of factorials” and “calculate the
average of a list” into two helper functions

- (if time) Try making a “return” version of “make list of
factorials” and a “modify” version
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factorial_avg_list
In Pycharm!



Recap

Lists exist! They are indexed collections of items, and there
are many things we can do with them.

A “move” on a parameter will not persist after the function
is over, but a “modify” will.

Changing elements of a list is a “modify”’

Most important list functions:
- indexing (1ist[index] getsindex’thitemin list)
- len(list), list.append(item)

The print function exists - it outputs text to the terminal, it
is not the same as returning

Doctests help us test our helper functions!
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