Lists

Its List o’clock

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Housekeeping

- Assignment 2 is released! Due Friday midnight, grace
period extends to Saturday midnight

- You should be having/have had your first IGs this week
for assignment 1 grading- reach out to your section
leader if you don’t know how to schedule I1Gs

Stanford | ENGINEERING

Computer Science

Today

- Solidify parameters and returns
- The print statement exists!
- Do factorial_avg
- Introduce doctests

- Introducing: Lists

- Alist variable
Traversing a list and the 1en () function
Modifying a list: indexing, append () and pop ()
A smorgasbord of list functions
Lists as parameters

Stanford | ENGINEERING

Computer Science

Moving away from images

Most of the variables we have worked with have been
pixels and images

They can also be numbers!
They can also be boolean values (True/False)

They can also be any other type of value (stay tuned!)

Stanford | ENGINEERING

Computer Science

Recall: Variables as numbers

def variable num example (filename) :
X = 3 # numbers without decimal are “ints”
y = 8.0 # numbers with decimal are “floats”

math is math

sum = X + y # sum is 11
prod X * vy # prod is 24
diff X -y # diff is -5

regular division
quotient =y / x # quotient is 2.6666

int division
int quoticent =y // x
int quotient is 2, // truncates decimal

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Introducing: The print function

- Theprint function takes in (as a parameter) something
to print
- It displays what you passed in on the Terminal!
- Works best with simpler types, like:
- Ints
- Floats
- Anythingin quotes, like *thello” (we call these
strings)
- Printing is not the same as returning

Stanford | ENGINEERING

Computer Science

Introducing: The print function

- Theprint function takes in (as a parameter) something
to print
- It displays what you passed in on the Terminal!
- Works best with simpler types, like:
- Ints
- Floats
- Anythingin quotes, like *thello” (we call these
strings)
Printing is not the same as returning

def variable num example (filename) :
x =3
print(x) # displays 3
print (“hello world”) # displays hello world

Stanford | ENGINEERING

Computer Science

factorial_average

- Let’s write a function, factorial average (numl,
num?2) , which takes in two numbers, prints their
factorials, and then prints the average of their factorials.

- Decompose “calculate the factorial of a number” and
“calculate the average of a number” into two helper
functions

Stanford | ENGINEERING

Computer Science

factorial_avg
(in pycharm)

Stanford | ENGINEERING
Computer Science

Frankie Cerkvenik, CS106A, 2023

“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

Stanford | ENGINEERING

Computer Science

“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():

x =1
y = 3
print (x)

change numl to avg(x, y)
print (x)

Stanford | ENGINEERING

Computer Science

“Changing” parameters

Lets try a “change” version of compute avg

numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

def change numl to avg(numl, num2):

Variables: Console prints:
x =1 1

Stanford | ENGINEERING

Computer Science

“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables:
x =1 numl = 1

I
w

y = 3 num2 Stanford | ENGINEERING

Computer Science

“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables:
x =1 numl = 1.5

I
w

y = 3 num2 Stanford | ENGINEERING

Computer Science

“Changing” parameters

Lets try a “change” version of compute avg

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables: Console prints:
x =1 numli—1-5 22?2

y = 3 num2—=—3 Stanford | ENGINEERING

Computer Science

“Changing” parameters
Q Q) The change does not persist O N

def change numl to avg(numl, num2):
numl = (numl + num2) / 2

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)
print (x)

Variables: Console prints:
x =1 nmumli—=——71-5 1
y = 3 num2—=—3 Stanford | ENGINEERING

Computer Science

“Changing” parameters

The change happens to numil, not x

def change numl to avg(numl, num2):
numl = (numl + num2) / 2
print (numl)

def use change avg():
x =1
y = 3
print (x)
change numl to avg(x, y)

print (x)

Variables: Console prints:
x =1 numl = 1.5 1.5

I
w

y = 3 num2 Stanford | ENGINEERING

Computer Science

Why? Copies!

A copy of an int is literally a different item
Changing the copy (numl) won’t change the original (x)

Variables:
x =1 numl = 1.5
y = 3 num2 = 3

Stanford | ENGINEERING

Computer Science

Note: “Catching” return values

hef factorial (num) :

result =1

for i in range(l, num + 1):
result = result * i

return result

def factorial avg(numl, num2):
this is different

factorial 1 = factorial (numl)
from this

factorial (num2)

Staniord ENGINEERING

Computer Science

Note: “Catching” return values

hef factorial (num) :

result =1

for i in range(l, num + 1):
result = result * i

return result

def factorial avg(numl, num2):
the return wvalue of factorial (numl) is saved
in the variable facotorial 1

factorial 1 = factorial (numl)

the return value of factorial (num2) dies!'!

factorial (num2) # we have no way of using it

Stanford ENGINEERING
Computer Science

Frankie Cerkvenik, CS106A, 2023

Testing functions: doctests

def factorial (num) :
This function returns the factorial of num
Doctests:
>>> factorial (3)
6
>>> factorial (0)
1
result =1
for 1 in range(l, num + 1):
result = result * i
return result

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Doctests

- In Pycharm, doctests allow you to test functions one at a
time

- Right-click on the function and hit ‘run Doctest func’ to
run the tests!

def func name (paraml, param2):
Function header comment
>>> func _name (0, 1)
1

wiww

text following >>> is code to run
text without >>> is expected output of previous code

Stanford | ENGINEERING

Computer Science

Why test?

We add doctests to our functions so we only have to
debug one function at a time

If we always had to debug an entire program, we would
have a hard time knowing where to start

Testing a helper function before using it is good practice

Stanford | ENGINEERING

Computer Science

Code Demo:
buggy factorial average

Its buggy!

Stanford | ENGINEERING

Computer Science

- Introducing: Lists

- Alist variable
Traversing a list and the 1en () function
Modifying a list: indexing, append () and pop ()
A smorgasbord of list functions
Lists as parameters

Stanford | ENGINEERING

Computer Science

Aside: Types
We have seen variables of different “Types”
- Int:
X int
Float:
y float = 3.5
String;:
color = ‘green’
Objects
- Simplelmage
image = SimpleImage (filename)
- Pixel
pixel

5

image.get pixel (0, O0)

Stanford | ENGINEERING

Computer Science

Aside: Types

We have seen variables of different “Types”
- Int:
X int = 5
- Float:
y float = 3.5
- String:
color = ‘green’
- Objects
- Simplelmage
image = SimpleImage (filename)
- Pixel
pixel
- New: List
- list var = [1, 2, 3]

image.get pixel (0, O0)

Stanford | ENGINEERING

Computer Science

What is a List?

e Alist is way to keep track of an ordered collection
of items

— Items in the list are called "elements"

— Ordered: We can refer to elements by their position

— Collection: 1ists can contain multiple items

* The list dynamically adjusts its size as elements are
added or removed

* Lists have a lot of built-in functionality to make using
them more straightforward

Stanford | ENGINEERING

Computer Science

Show me some 1ists!
* Creating lists

— Lists start/end with brackets. Elements separated by
commas.

my list = [1, 2, 3]

reals = [4.7, -6.0, 0.22, 1.6]

strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]

empty list = []

Stanford | ENGINEERING

Computer Science

Show me some 11sts!

e List with one element is not the same as the element
— Could try this out:

def main() :
list one = [1]

one =1

print (list one == one)
Terminal:
False

Stanford | ENGINEERING

Computer Science

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are
indexed

— Indexes start from O

letterS—> 'al 'b' 'cl 'd' lel

0 1 2 3 4

Stanford | ENGINEERING

Computer Science

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are
indexed

— Indexes start from O

letterS—> 'al 'b' 'cl 'd' lel

0 1 2 3 4

e Access individual elements:
letters[0] is 'a'
letters([4] is 'e'

Stanford | ENGINEERING

Computer Science

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are
indexed

— Indexes start from O

letterS—> 'xl 'b' 'cl 'd' lel

0 1 2 3 4

* Can set individual elements like regular variable:
letters[0] = 'x'

Stanford | ENGINEERING

Computer Science

Getting Length of a List

e Consider the following list:
letters = ['a', 'b', '¢', 'd', 'e']

e Can get length of list with 1Len function:
len(letters) is 5

 The lastitem in letters is at index 1len (letters) - 1
last letter = letters[len(letters) - 1)

Stanford | ENGINEERING

Computer Science

Iterating through a list

We can iterate through every element in a list using our
handy-dandy for-loop!

def main|() :
letters = ['a', 'b', 'e¢', 'd', 'e']
for i in range(len(letters)):
print(i, "->", letters[i])

Terminal:
0->a
1->b
2->C
3->d
4->e

Stanford | ENGINEERING

Computer Science

List Pop Quiz

* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = ???
len (empty list) = ??
mix[0] = 2?7
strs[len(strs) - 1] = ??

empty list]| 0] = 27 Stanford | ENGINEERING

Computer Science

List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = 3
len (empty list) = ??
mix[0] = 2?7
strs[len(strs) - 1] = ??

empty list]| 0] = 27 Stanford | ENGINEERING

Computer Science

List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = 3
len(empty list) = 0
mix[0] = 2?7
strs[len(strs) - 1] = ??

empty list]| 0] = 27 Stanford | ENGINEERING

Computer Science

List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) = 3
len(empty list) = 0
mix[0] = 4
strs[len(strs) - 1] = ‘list’

empty list]| 0] = 27 Stanford | ENGINEERING

Computer Science

List Pop Quiz
* Recall our old lists:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []
* Pop quiz!
len(my list) = 3
len(empty list) = 0
mix[0] = 4
strs[len(strs) - 1] = ‘list’

empty list[0] IndexError: list index out of range
_— Stanford | ENGINEERING

Computer Science

Superpowered Indexing
e Can use negative index to work back from end of list

letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'

letters[-2] s 'd’
letters[-5] is 'a'

Stanford | ENGINEERING

Computer Science

Superpowered Indexing

- Can use negative index to work back from end of list
letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'
letters[-2] s 'd’
letters[-5] is 'a'

- For indexes, think of =x as the same as len (list)-x
letters[-1] is sameas letters[len(letters)-1]

Stanford | ENGINEERING

Computer Science

Superpowered Indexing

- Can use negative index to work back from end of list
letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'
letters[-2] s 'd’
letters[-5] is 'a'

- For indexes, think of =x as the same as len (list)-x
letters[-1] is sameas letters[len(letters)-1]

e How about this?
letters|[6]

Stanford | ENGINEERING

Computer Science

Superpowered Indexing

- Can use negative index to work back from end of list
letters = ['a', 'b', '¢', 'd', 'e']
letters[-1] is 'e'
letters[-2] s 'd’
letters[-5] is 'a'

- For indexes, think of =x as the same as len (list)-x
letters[-1] is sameas letters[len(letters)-1]

* How about this?
letters|[6]
IndexError: list index out of range

Stanford | ENGINEERING

Computer Science

Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]

alist ==p| 10 20 30

[10, 20, 30] Stanford | ENGINEERING

Computer Science

Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)

alist =p| 10 20 30 40
[10, 20/ 30/ 40] Stanford | ENGINEERING

Computer Science

Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)
alist.append(50)

alist =p| 10 20 30 40 50
[10, 20/ 30/ 40/ 50] Stanford | ENGINEERING

Computer Science

Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)
alist.append(50)
new list = []

new list =———p cmpty list

[]
alist=—p| 10 | 20 [30 | 40 | 50

[10, 20, 30, 40, 50] Stanford | ENGINEERING

Computer Science

Building Up Lists
* Can add elements to end of list with . append
alist = [10, 20, 30]
alist.append (40)
alist.append(50)
new list = []

new list.append('a')

new list =——p | '3’
['a']
alist =—p| 10 20 30 40 50

[10, 20/ 30/ 40/ 50] Stanford | ENGINEERING

Computer Science

Building Up Lists
* Can add elements to end of list with . append

alist = [10, 20, 30]

alist.append(40)

alist.append(50)

new list = []

new list.append('a'’)

new list.append(4.3)

new list =——>| 'a' | 4.3
['a', 4.3]

alist —p| 10 20 30 40 50
[10, 20, 30, 40, 50] stanford|eNGINEERING

Computer Science

Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

alist =p| 10 20 30 40 50
[10, 20/ 30/ 40/ 50] Stanford | ENGINEERING

Computer Science

Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

X ——— 50
50

alist =—p| 10 20 30 40
[10, 20/ 30/ 40] Stanford | ENGINEERING

Computer Science

Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()

X ——— | 40
40

alist =—p| 10 20 30

[10, 20, 30] Stanford | ENGINEERING

Computer Science

Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()

X — | 30
30

alist =m=—p| 10 20
[10, 20] Stanford | ENGINEERING

Computer Science

Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

X m—— | 20
20

alist =p| 10

[10] Stanford | ENGINEERING

Computer Science

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

X

X X X N

X —— | 10

alist.pop ()
alist.pop ()
alist.pop ()
alist.pop ()
alist.pop ()

10

alist = cmpty list

[] Stanford | ENGINEERING

Computer Science

Removing Elements from Lists
* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

x = alist.pop() Whatif we did one more?
x = alist.pop() x = alist.pop()
X = alist.pop() IndexError: pop from empty list
x = alist.pop()
b
. e Don’t do

10 it!

alist = cmpty list

[] Stanford | ENGINEERING

Computer Science

More Fun With Lists

 Can | get a couple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

* Printing lists: Terminal
print (num list) [1, 2, 3, 4]
print(str list) ['Ruth', 'John', 'Sonia']

Stanford | ENGINEERING

Computer Science

More Fun With Lists

 Can | get a couple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

* Printing lists:

Terminal:
print (num list) [1, 2, 3, 4]
print(str list) ['Ruth', 'John', 'Sonia']

* Check to see if list is empty (empty list is like
"False")
if num list:
print('num list is not empty')
else:
print('num list is empty') Stanford | ENGINEERING

Computer Science

Even More Fun With Lists

num list = [1, 2, 3, 4]
str list = ['Ruth', 'John', 'Sonia']

* Check to see if a list contains an element:
x =1
if x in num list:
do something

* General form of test (evaluates to a Boolean):
element in list

— Returns True if elementisavalueinlist, False
otherwise

— Could use as testinawhile loop too

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 1)!
* Function: list.pop (index) # pop can take parameter

— Removes (and returns) an element at specified index
fun list = ['a', 'b', 'c', 'd']

x = fun list.pop(2) # x will be set to 'c'

fun list willthenbe ['a', 'b', 'd']

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 1)!
* Function: list.pop (index) # pop can take parameter

— Removes (and returns) an element at specified index
fun list = ['a', 'b', 'c', 'd']
x = fun list.pop(2) # x will be set to 'c'

fun list willthenbe ['a', 'b', 'd']

* Function: list. remove (elem)

— Removes (and returns) first occurrence of element in list
another list = ['a', 'b', 'c', 'b']
another list.remove('b')

— another list willthenbe ['a', 'c', 'b']

— ValueError if you try to remove an element that isn't in list
Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 2)!
* Function: list. extend (other list)

— Adds all elements from other list to list that function is called on

listl = [1, 2, 3]
list2 = [4, 5]
listl.extend(list2)

listl willthenbe [1, 2, 3, 4, 5]

list2 isstill [4, 5]

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 2)!
* Function: list. extend (other list)

— Adds all elements from other list to list that function is called on

listl = [1, 2, 3]
list2 = [4, 5]
listl.extend(list2)

listl willthenbe [1, 2, 3, 4, 5]
e append is not the same as extend

— Append adds a single element, extends merges a list onto another

listl = [1, 2, 3]
list2 = [4, 5]
listl.append(list2)

listl willthenbe [1, 2, 3, [4, 5]]

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 3)!

* Using + operator on lists works like extend , but
creates a new list. Original lists are unchanged.

listl [1, 2, 3]
list2 [4, 5]
list3 = 1listl + list2

list3 willthenbe [1, 2, 3, 4, 5]

listl isstill [1, 2, 3] and 1list2 is [4, 5]

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 3)!

* Using + operator on lists works like extend , but
creates a new list. Original lists are unchanged.

listl [1, 2, 3]
list2 [4, 5]
list3 = 1listl + list2

list3 willthenbe [1, 2, 3, 4, 5]

listl isstill [1, 2, 3] and 1list2 is [4, 5]
 Can use += operator just like extend

listl += list2
listl willthenbe [1, 2, 3, 4, 5]

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 4)!
* Function: list.index (elem)

— Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'ec']
i = alist.index('b') # i willbesettol

— ValueError if you ask for index of an element that isn't in list

Stanford | ENGINEERING

Computer Science

List Function Extravaganza (part 4)!

* Function: list.index (elem)
— Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'ec']
i = alist.index('b') # i willbesettol

— ValueError if you ask for index of an element that isn't in list

* Function: list.insert (index, elem)

— Inserts elem at the given index. Shifts all other elements down.
lecturers = ['mehran', 'amrita', 'Elyse']
lecturers.insert(l, 'frankie')

lecturers will then be

['mehran', 'frankie', 'amrita', 'Elyse']
Stanford | ENGINEERING

Computer Science

Looping Through List Elements

str list = ['Ruth', 'John',

* For loop using range:

'Sonia']

for i in range(len(str list)):

elem = str list[i]

print (elem)

Output:

Ruth
John
Sonia

Stanford | ENGINEERING

Computer Science

Looping Through List Elements
str list = ['Ruth', 'John', 'Sonia']

* For loop using range:
for i in range(len(str list)):
elem = str list[i]

print (elem)

. Output:
* We can use a new kind of loop [ruth
called a "for-each" loop John
for elem in str list: Sonia

print (elem)

* These loops both iterate over all elements of the list

— Variable elem is set to each value in list (in order)
Stanford | ENGINEERING

Computer Science

New loop alert

For-Each Loop Over Lists
str list = ['Ruth', 'John', 'Sonia']

for elem in str_list:

Body of loop } This code gets

Do something with elem repeated once fc?r
each element in list

* " Like variable i in for loop using range (),
elem is a variable that gets updated with
each loop iteration.

e elem gets assigned to each element in the

list in turn.

Stanford | ENGINEERING

Computer Science

Lists as Parameters

e When you pass a list as a parameter you are passing a
reference to the actual list
- In helper functions, changes to values in list persist
after function ends (just like modifying an attribute!)

def add five(num list):
for i in range(len(num list)):
num list[i] += 5

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: ??? Stanford | ENGINEERING

Computer Science

Lists as Parameters

e When you pass a list as a parameter you are passing a
reference to the actual list
- In helper functions, changes to values in list persist
after function ends (just like modifying an attribute!)

def add five(num list):
for i in range(len(num list)):
num list[i] += 5

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: [10, 11, 12, 13] Stanford | ENGINEERING

Computer Science

More on Lists as Parameters
 But, watch out if you create a new list in a function
- Creating a new list means you're no longer dealing with
list passed in as parameter.
- At that point you are no longer changing parameter passed in
- (This is moving, not modifying)

def create new list(num list):
num list.append(9)
num list = [1, 2, 3]

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: 222 Stanford | ENGINEERING

Computer Science

More on Lists as Parameters
 But, watch out if you create a new list in a function
- Creating a new list means you're no longer dealing with
list passed in as parameter.
- At that point you are no longer changing parameter passed in
- (This is moving, not modifying)

def create new list(num list):
num list.append(9) #modify, will persist
num list = [1, 2, 3] #move, wont persist

def main () :
values = [5, 6, 7, 8]
add five (values)
print (values)

Terminal: [5,6, 7, 8, 9] Stanford | ENGINEERING

Computer Science

Note on Loops and Lists
list = [10, 20, 30]

* For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in 1list

* For-each loop:

for elem in list: # Modifying local variable
elem += 1 # elem - NOT the value in

the list, but a copy

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Note on Loops and Lists
list = [10, 20, 30]

* For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in list

* For-each loop:

for elem in list: # Modifying local wvariable
elem += 1 # elem - NOT the value in

the list, but a copy
e Use for loop with range when modifying elements of list

* Use for-each loop when not modifying elements of list

Stanford | ENGINEERING

Computer Science

Put it together: factorial avg list
- Let’s write a function, factorial avg list (nums)
- Takes in a list of numbers and prints their factorials

(as a list)
- Then prints the average of all the factorials

- Decompose “make list of factorials” and “calculate the
average of a list” into two helper functions

- (if time) Try making a “return” version of “make list of
factorials” and a “modify” version

Stanford | ENGINEERING

Computer Science

factorial_avg_list
In Pycharm!

Recap

Lists exist! They are indexed collections of items, and there
are many things we can do with them.

A “move” on a parameter will not persist after the function
is over, but a “modify” will.

Changing elements of a list is a “modify”’

Most important list functions:
- indexing (1ist[index] getsindex’thitemin list)
- len(list), list.append(item)

The print function exists - it outputs text to the terminal, it
is not the same as returning

Doctests help us test our helper functions!
Stanford | ENGINEERING

Computer Science

