
Frankie Cerkvenik, CS106A, 2023

Lists
Its List oʼclock
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- Assignment 2 is released! Due Friday midnight, grace 
period extends to Saturday midnight

- You should be having/have had your first IGs this week 
for assignment 1 grading- reach out to your section 
leader if you donʼt know how to schedule IGs

Housekeeping 
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- Solidify parameters and returns
- The print statement exists!
- Do factorial_avg
- Introduce doctests

- Introducing: Lists
- A list variable
- Traversing a list and the len() function
- Modifying a list: indexing, append() and pop()
- A smorgasbord of list functions
- Lists as parameters

Today
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- Most of the variables we have worked with have been 
pixels and images

- They can also be numbers!

- They can also be boolean values (True/False)

- They can also be any other type of value (stay tuned!)

Moving away from images
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Recall: Variables as numbers
 def variable_num_example(filename):

x = 3 # numbers without decimal are “ints”
y = 8.0 # numbers with decimal are “floats”

# math is math
 sum = x + y # sum is 11

prod = x * y # prod is 24
diff = x - y # diff is -5

# regular division
quotient = y / x # quotient is 2.6666

# int division
int_quotioent = y // x
# int_quotient is 2, // truncates decimal
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- The print function takes in (as a parameter) something 
to print

- It displays what you passed in on the Terminal!
- Works best with simpler types, like:

- Ints
- Floats
- Anything in quotes, like “hello” (we call these 

strings)
- Printing is not the same as returning

Introducing: The print function
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- The print function takes in (as a parameter) something 
to print

- It displays what you passed in on the Terminal!
- Works best with simpler types, like:

- Ints
- Floats
- Anything in quotes, like “hello” (we call these 

strings)
- Printing is not the same as returning

Introducing: The print function

 def variable_num_example(filename):
x = 3
print(x) # displays 3
print(“hello world”) # displays hello world
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- Letʼs write a function, factorial_average(num1, 
num2), which takes in two numbers, prints their 
factorials, and then prints the average of their factorials.

- Decompose “calculate the factorial of a number” and 
“calculate the average of a number” into two helper 
functions

factorial_average
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factorial_avg 
(in pycharm)
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Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2
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Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)
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Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1
y = 3

Console prints:
1
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Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1
y = 3 num2 = 3
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Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3
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Lets try a “change” version of compute_avg

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
???
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🚫🚫The change does not persist 🚫🚫
“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
1
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The change happens to num1, not x

“Changing” parameters

 def change_num1_to_avg(num1, num2):
num1 = (num1 + num2) / 2
print(num1)

 
 def use_change_avg():

x = 1
y = 3
print(x)
change_num1_to_avg(x, y)
print(x)

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

Console prints:
1.5
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Why? Copies!

Variables:
x = 1 num1 = 1.5
y = 3 num2 = 3

A copy of an int is literally a different item
Changing the copy (num1) wonʼt change the original (x) 
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Note: “Catching” return values
def factorial(num):

result = 1
for i in range(1, num + 1):

result = result * i
return result

def factorial_avg(num1, num2):
# this is different

factorial_1 = factorial(num1)
# from this

factorial(num2)
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Note: “Catching” return values
def factorial(num):

result = 1
for i in range(1, num + 1):

result = result * i
return result

def factorial_avg(num1, num2):
# the return value of factorial(num1) is saved 
# in the variable facotorial_1

factorial_1 = factorial(num1)

# the return value of factorial(num2) dies! 

factorial(num2) # we have no way of using it
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Testing functions: doctests
def factorial(num):

"""
This function returns the factorial of num 
Doctests:
>>> factorial(3)
6
>>> factorial(0)
1
"""
result = 1
for i in range(1, num + 1):

result = result * i
return result
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- In Pycharm, doctests allow you to test functions one at a 
time 

- Right-click on the function and hit ʻrun Doctest funcʼ to 
run the tests!

text following >>> is code to run
text without >>> is expected output of previous code

Doctests

def func_name(param1, param2):
"""
Function header comment
>>> func_name(0, 1)
1 
"""
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- We add doctests to our functions so we only have to 
debug one function at a time

- If we always had to debug an entire program, we would 
have a hard time knowing where to start

- Testing a helper function before using it is good practice

Why test?
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Code Demo: 
buggy_factorial_average

Its buggy!
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- Solidify parameters and returns
- Do factorial_avg
- The print statement exists!
- Introduce doctests

- Introducing: Lists
- A list variable
- Traversing a list and the len() function
- Modifying a list: indexing, append() and pop()
- A smorgasbord of list functions
- Lists as parameters

Today
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We have seen variables of different “Types”
- Int:

x_int = 5
- Float:

y_float = 3.5
- String:

color = ‘green’
- Objects

- SimpleImage 
image = SimpleImage(filename)

- Pixel
pixel = image.get_pixel(0, 0)

Aside: Types
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We have seen variables of different “Types”
- Int:

x_int = 5
- Float:

y_float = 3.5
- String:

color = ‘green’
- Objects

- SimpleImage 
image = SimpleImage(filename)

- Pixel
pixel = image.get_pixel(0, 0)

- New: List
- list_var = [1, 2, 3]

Aside: Types
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What is a List?
• A list is way to keep track of an ordered collection 

of items
– Items in the list are called "elements"

– Ordered: We can refer to elements by their position

– Collection: lists can contain multiple items

• The list dynamically adjusts its size as elements are 
added or removed

• Lists have a lot of built-in functionality to make using 
them more straightforward
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Show me some lists!
• Creating lists

– Lists start/end with brackets. Elements separated by 
commas.

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []
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Show me some lists!
• List with one element is not the same as the element

– Could try this out:

def main():
list_one = [1]
one = 1
print(list_one == one)

Terminal:
False
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• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are 
indexed
– Indexes start from 0

letters

Accessing Elements of List

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4
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• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are 
indexed
– Indexes start from 0

letters

• Access individual elements:
letters[0] is 'a'
letters[4] is 'e'

Accessing Elements of List

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4
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• Consider the following list:
letters = ['a', 'b', 'c', 'd', 'e']

• Can think of it like a series of variables that are 
indexed
– Indexes start from 0

letters

• Can set individual elements like regular variable:
letters[0] = 'x'

Accessing Elements of List

'x' 'b' 'c' 'd' 'e'

0 1 2 3 4



Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Getting Length of a List
• Consider the following list:

letters = ['a', 'b', 'c', 'd', 'e']

• Can get length of list with len function:

len(letters) is 5

• The last item in letters is at index len(letters) - 1

last_letter = letters[len(letters) - 1)
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Iterating through a list
We can iterate through every element in a list using our 

handy-dandy for-loop!

Terminal:
0 -> a
1 -> b
2 -> c
3 -> d
4 -> e

def main():
   letters = ['a', 'b', 'c', 'd', 'e']
   for i in range(len(letters)):
      print(i, "->", letters[i])



Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

List Pop Quiz 
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = ???

len(empty_list) = ??

mix[0] = ??

strs[len(strs) - 1] = ??

empty_list[0] = ??
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List Pop Quiz 
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = ??

mix[0] = ??

strs[len(strs) - 1] = ??

empty_list[0] = ??
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List Pop Quiz 
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = 0

mix[0] = ??

strs[len(strs) - 1] = ??

empty_list[0] = ??
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List Pop Quiz 
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = 0

mix[0] = 4

strs[len(strs) - 1] = ‘list’

empty_list[0] = ??
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List Pop Quiz 
• Recall our old lists:

my_list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty_list = []

• Pop quiz!
len(my_list) = 3

len(empty_list) = 0

mix[0] = 4

strs[len(strs) - 1] = ‘list’

empty_list[0] IndexError: list index out of range
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Superpowered Indexing
• Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'
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Superpowered Indexing
- Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

- For indexes, think of –x as the same as len(list)–x
letters[-1] is same as letters[len(letters)-1]



Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Superpowered Indexing
- Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

- For indexes, think of –x as the same as len(list)–x
letters[-1] is same as letters[len(letters)-1]

• How about this?

letters[6]
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Superpowered Indexing
- Can use negative index to work back from end of list

letters = ['a', 'b', 'c', 'd', 'e']

letters[-1] is 'e'
letters[-2] is 'd'
letters[-5] is 'a'

- For indexes, think of –x as the same as len(list)–x
letters[-1] is same as letters[len(letters)-1]

• How about this?

letters[6]
IndexError: list index out of range
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Building Up Lists
• Can add elements to end of list with .append

alist = [10, 20, 30]

10 20 30alist

[10, 20, 30]
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• Can add elements to end of list with .append
alist = [10, 20, 30] 
alist.append(40)

10 20 30 40alist

[10, 20, 30, 40]

Building Up Lists
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• Can add elements to end of list with .append
alist = [10, 20, 30] 
alist.append(40) 
alist.append(50)

10 20 30 40 50alist

[10, 20, 30, 40, 50]

Building Up Lists
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• Can add elements to end of list with .append
alist = [10, 20, 30] 
alist.append(40) 
alist.append(50) 
new_list = []

10 20 30 40 50alist

[10, 20, 30, 40, 50]

new_list empty list
[]

Building Up Lists
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• Can add elements to end of list with .append
alist = [10, 20, 30] 
alist.append(40) 
alist.append(50) 
new_list = [] 
new_list.append('a')

10 20 30 40 50

new_list 'a'
['a']

alist

[10, 20, 30, 40, 50]

Building Up Lists
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10 20 30 40 50

'a' 4.3

• Can add elements to end of list with .append
alist = [10, 20, 30] 
alist.append(40) 
alist.append(50) 
new_list = [] 
new_list.append('a') 
new_list.append(4.3)

new_list
['a', 4.3]

alist

[10, 20, 30, 40, 50]

Building Up Lists
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Removing Elements from Lists
• Can remove elements from end of list with .pop

– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

10 20 30 40 50alist

[10, 20, 30, 40, 50]
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• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

10 20 30 40

[10, 20, 30, 40]

x 50

50

alist

Removing Elements from Lists
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• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()

10 20 30

[10, 20, 30]

x 40

40

alist

Removing Elements from Lists



Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop() 
x = alist.pop() 
x = alist.pop()

10 20

[10, 20]

x 30

30

alist

Removing Elements from Lists
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• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop() 
x = alist.pop() 
x = alist.pop() 
x = alist.pop()

alist 10

[10]

x 20

20

Removing Elements from Lists
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• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop() 
x = alist.pop() 
x = alist.pop() 
x = alist.pop() 
x = alist.pop()

alist

x 10

10

empty list
[]

Removing Elements from Lists
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• Can remove elements from end of list with .pop
– Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop() 
x = alist.pop() 
x = alist.pop() 
x = alist.pop()

alist

x 10

10

empty list
[]

What if we did one more?

x = alist.pop()

IndexError: pop from empty list

Donʼt do 
it!

Removing Elements from Lists
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More Fun With Lists
• Can I get a couple new lists, please?

num_list = [1, 2, 3, 4]
str_list = ['Ruth', 'John', 'Sonia']

• Printing lists:
print(num_list) 
print(str_list)

[1, 2, 3, 4]
['Ruth', 'John', 'Sonia']

Terminal:
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More Fun With Lists
• Can I get a couple new lists, please?

num_list = [1, 2, 3, 4]
str_list = ['Ruth', 'John', 'Sonia']

• Printing lists:
print(num_list) 
print(str_list)

• Check to see if list is empty (empty list is like 
"False")
if num_list:

print('num_list is not empty')
else:

print('num_list is empty')

[1, 2, 3, 4]
['Ruth', 'John', 'Sonia']

Terminal:
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Even More Fun With Lists
num_list = [1, 2, 3, 4]
str_list = ['Ruth', 'John', 'Sonia']

• Check to see if a list contains an element:

x = 1
if x in num_list:

# do something

• General form of test (evaluates to a Boolean):

element in list

– Returns True if element is a value in list, False 
otherwise

– Could use as test in a while loop too
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List Function Extravaganza (part 1)!
• Function: list.pop(index) # pop can take parameter

– Removes (and returns) an element at specified index
fun_list = ['a', 'b', 'c', 'd']
x = fun_list.pop(2) # x will be set to 'c'

fun_list will then be ['a', 'b', 'd']
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List Function Extravaganza (part 1)!
• Function: list.pop(index) # pop can take parameter

– Removes (and returns) an element at specified index
fun_list = ['a', 'b', 'c', 'd']
x = fun_list.pop(2) # x will be set to 'c'

fun_list will then be ['a', 'b', 'd']

• Function: list.remove(elem)
– Removes (and returns) first occurrence of element in list 
another_list = ['a', 'b', 'c', 'b'] 
another_list.remove('b')

– another_list will then be ['a', 'c', 'b']

– ValueError if you try to remove an element that isn't in list
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List Function Extravaganza (part 2)!

list1 = [1, 2, 3]
list2 = [4, 5]

• Function: list.extend(other_list)
– Adds all elements from other_list to list that function is called on

list1.extend(list2)

list1 will then be [1, 2, 3, 4, 5]

list2 is still [4, 5]
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List Function Extravaganza (part 2)!

list1 = [1, 2, 3]
list2 = [4, 5]

list1 = [1, 2, 3]
list2 = [4, 5]

• Function: list.extend(other_list)
– Adds all elements from other list to list that function is called on

list1.extend(list2)

list1 will then be [1, 2, 3, 4, 5]

• append is not the same as extend
– Append adds a single element, extends merges a list onto another

list1.append(list2)

list1 will then be [1, 2, 3, [4, 5]]
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List Function Extravaganza (part 3)!
• Using + operator on lists works like extend , but 

creates a new list. Original lists are unchanged.

list1 = [1, 2, 3]
list2 = [4, 5]
list3 = list1 + list2

list3 will then be [1, 2, 3, 4, 5]

list1 is still [1, 2, 3] and list2 is [4, 5]
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List Function Extravaganza (part 3)!
• Using + operator on lists works like extend , but 

creates a new list. Original lists are unchanged.

list1 = [1, 2, 3]
list2 = [4, 5]
list3 = list1 + list2

list3 will then be [1, 2, 3, 4, 5]

list1 is still [1, 2, 3] and list2 is [4, 5]

• Can use += operator just like extend

list1 += list2
list1 will then be [1, 2, 3, 4, 5]
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List Function Extravaganza (part 4)!
• Function: list.index(elem)

– Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'c']
i = alist.index('b') # i will be set to 1

– ValueError if you ask for index of an element that isn't in list
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List Function Extravaganza (part 4)!
• Function: list.index(elem)

– Returns index of first element in list that matches parameter elem
alist = ['a', 'b', 'b', 'c']
i = alist.index('b') # i will be set to 1

– ValueError if you ask for index of an element that isn't in list

• Function: list.insert(index, elem)
– Inserts elem at the given index. Shifts all other elements down. 
lecturers = ['mehran', 'amrita', 'Elyse'] 
lecturers.insert(1, 'frankie')

lecturers will then be 

['mehran', 'frankie', 'amrita', 'Elyse']
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Looping Through List Elements
str_list = ['Ruth', 'John', 'Sonia']

• For loop using range:
for i in range(len(str_list)): 

elem = str_list[i] 
print(elem) Ruth 

John 
Sonia

Output:
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Looping Through List Elements
str_list = ['Ruth', 'John', 'Sonia']

• For loop using range:
for i in range(len(str_list)): 

elem = str_list[i] 
print(elem)

• We can use a new kind of loop 
called a "for-each" loop
for elem in str_list: 

print(elem)

• These loops both iterate over all elements of the list
– Variable elem is set to each value in list (in order)

Ruth 
John 
Sonia

Output:



New loop alert
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For-Each Loop Over Lists
str_list = ['Ruth', 'John', 'Sonia']

for elem in str_list: 
# Body of loop
# Do something with elem

• Like variable i in for loop using range(), 
elem is a variable that gets updated with 
each loop iteration.

• elem gets assigned to each element in the 

list in turn.

This code gets 
repeated once for 

each element in list
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Lists as Parameters
• When you pass a list as a parameter you are passing a 

reference to the actual list 
- In helper functions, changes to values in list persist 

after function ends (just like modifying an attribute!)

Terminal: ???

def add_five(num_list):
   for i in range(len(num_list)):
      num_list[i] += 5

def main():
   values = [5, 6, 7, 8]
   add_five(values)
   print(values)
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Lists as Parameters
• When you pass a list as a parameter you are passing a 

reference to the actual list 
- In helper functions, changes to values in list persist 

after function ends (just like modifying an attribute!)

Terminal: [10, 11, 12, 13]

def add_five(num_list):
   for i in range(len(num_list)):
      num_list[i] += 5

def main():
   values = [5, 6, 7, 8]
   add_five(values)
   print(values)
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More on Lists as Parameters
• But, watch out if you create a new list in a function

– Creating a new list means you're no longer dealing with 
list passed in as parameter.

– At that point you are no longer changing parameter passed in
– (This is moving, not modifying)

def create_new_list(num_list):
   num_list.append(9)
   num_list = [1, 2, 3]

def main():
   values = [5, 6, 7, 8]
   add_five(values)
   print(values)

Terminal: ???
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More on Lists as Parameters
• But, watch out if you create a new list in a function

– Creating a new list means you're no longer dealing with 
list passed in as parameter.

– At that point you are no longer changing parameter passed in
– (This is moving, not modifying)

def create_new_list(num_list):
   num_list.append(9) #modify, will persist
   num_list = [1, 2, 3] #move, wont persist

def main():
   values = [5, 6, 7, 8]
   add_five(values)
   print(values)

Terminal: [5, 6, 7, 8, 9]
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Note on Loops and Lists
list = [10, 20, 30]

• For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in list

• For-each loop:

for elem in list: # Modifying local variable
elem += 1 #

#

elem - NOT the value in 
the list, but a copy 
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Note on Loops and Lists
list = [10, 20, 30]

• For loop using range:
for i in range(len(list)):

list[i] += 1# Modifying values in list

• For-each loop:

for elem in list: # Modifying local variable
elem += 1 #

#

elem - NOT the value in 
the list, but a copy 

• Use for loop with range when modifying elements of list

• Use for-each loop when not modifying elements of list
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- Letʼs write a function, factorial_avg_list(nums)
- Takes in a list of numbers and prints their factorials 

(as a list)
- Then prints the average of all the factorials

- Decompose “make list of factorials” and “calculate the 
average of a list” into two helper functions

- (if time) Try making a “return” version of “make list of 
factorials” and a “modify” version

Put it together: factorial_avg_list



factorial_avg_list
In Pycharm!
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- Lists exist! They are indexed collections of items, and there 
are many things we can do with them. 

- A “move” on a parameter will not persist after the function 
is over, but a “modify” will.

 
- Changing elements of a list is a “modify”

- Most important list functions: 
- indexing (list[index] gets indexʼth item in list) 
- len(list), list.append(item)

- The print function exists - it outputs text to the terminal, it 
is not the same as returning

- Doctests help us test our helper functions!

Recap


