
Frankie Cerkvenik, CS106A, 2023

Solidify it all + Python Main
Revisit animation + complete the python main function

picture

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Breakout is released and due Sunday, July 23

- Midterm information is released on the website! Midterm
is July 26th, 5-7pm in NVIDIA Auditorium

- If you have accommodations, you should receive an
email about your exam time/location soon

- If you are SCPD, you should have nominated your exam
proctor through SCPD

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap Animation
- Animation loop
- Bouncing ball mechanics

- Graphics odds and ends
- Demo a few more graphics functions
- cleanup_circles

- Python main - how to process input from command line

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

DELAY = 1 / 120

def main():
 # setup

 while True:
 # update world
 canvas.update()

 time.sleep(DELAY)# pause before updating again

The animation loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

DELAY = 1 / 120

def main():
 # setup - make all the variables you need

 while True:
 # update world
 canvas.update()

 time.sleep(DELAY)# pause before updating again

The animation loop

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

DELAY = 1 / 120

def main():
 # setup

 while True:
 # update world
 canvas.update()

 time.sleep(DELAY)# pause before updating again

The animation loop

- The animation loop is like a loop
over “frames”

- During one iteration the canvas
will look one way.

- On the next loop, it will look
slightly different

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

DELAY = 1 / 120

def main():
 # setup

 while True:
 # update world
 canvas.update()

 time.sleep(DELAY)# pause before updating again

The animation loop

- Pause for a fraction of a second so
the user can see the update

- DELAY is like your “frame rate”
- Smaller DELAY + Smaller update

to canvas = higher res animation

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Bouncing Ball

change_x

change_y

Third frame

Piech + Sahami, CS106A, Stanford University

Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford University

Bouncing Ball
What happens when we hit a wall?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Bouncing Ball
We have this velocity

change_x

change_y

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Bouncing Ball
Our new velocity

change_y

change_x

When reflecting vertically:
change_y = -change_y

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Bouncing Ball
Seventh frame

change_y

change_x

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

def main():
canvas = Canvas(CANVAS_WIDTH, CANVAS_HEIGHT, 'DVD')
create "dvd"
ball = canvas.create_oval(...)
start with this initial velocity
change_x = 1
change_y = 1
while True:

canvas.move(ball, change_x, change_y)
if # we hit the top or bottom:

change_y = -1 * change_y
elif #we hit the left or right:

change_x = -1 * change_x
canvas.update()
time.sleep(DELAY)

Bouncing Ball General Idea

Frankie Cerkvenik, CS106A, 2023

Review dvd_screen_saver_soln on your
own!

Add in “winner winner” code if dvd hits the corner

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap Animation
- Animation loop
- Bouncing ball mechanics

- Graphics odds and ends
- Demo a few more graphics functions
- cleanup_circles

- Python main - how to process input from command line

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

get the x location of the mouse
mouse_x = canvas.get_mouse_x()

More Graphics Functions Reference

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

get the x location of the mouse
mouse_x = canvas.get_mouse_x()

move shape to some new coordinates
canvas.moveto(shape, new_x, new_y)

More Graphics Functions Reference

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

get the x location of the mouse
mouse_x = canvas.get_mouse_x()

move shape to some new coordinates
canvas.moveto(shape, new_x, new_y)

move shape by a given change_x and change_y
canvas.move(shape, change_x, change_y)

More Graphics Functions Reference

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

get the x location of the mouse
mouse_x = canvas.get_mouse_x()

move shape to some new coordinates
canvas.moveto(shape, new_x, new_y)

move shape by a given change_x and change_y
canvas.move(shape, change_x, change_y)

get the coordinates of a shape
top_y = canvas.get_top_y(shape)
left_x = canvas.get_left_x(shape)
coord_list = canvas.coords(shape)

More Graphics Functions Reference

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

get the x location of the mouse
mouse_x = canvas.get_mouse_x()

move shape to some new coordinates
canvas.moveto(shape, new_x, new_y)

move shape by a given change_x and change_y
canvas.move(shape, change_x, change_y)

get the coordinates of a shape
top_y = canvas.get_top_y(shape)
left_x = canvas.get_left_x(shape)
coord_list = canvas.coords(shape)

return a list of elements in a rectangle area
results = canvas.find_overlapping(x1, y1, x2, y2)

More Graphics Functions Reference

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

get the x location of the mouse
mouse_x = canvas.get_mouse_x()

move shape to some new coordinates
canvas.moveto(shape, new_x, new_y)

move shape by a given change_x and change_y
canvas.move(shape, change_x, change_y)

get the coordinates of a shape
top_y = canvas.get_top_y(shape)
left_x = canvas.get_left_x(shape)
coord_list = canvas.coords(shape)

return a list of elements in a rectangle area
results = canvas.find_overlapping(x1, y1, x2, y2)

wait for a click
canvas.wait_for_click()

More Graphics Functions Reference

Frankie Cerkvenik, CS106A, 2023

Tracking

Frankie Cerkvenik, CS106A, 2023

Tracking

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Write a program that:
- Fills a Canvas with 10 circles with random size and

position
- Allows the user to move a square around with their

mouse
- When the square touches a circle, the circle is

removed
- When all circles are gone, prints “Winner” to the

terminal
- Decompose making the circles and removing a circle

Cleanup circles

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Goal

Frankie Cerkvenik, CS106A, 2023

cleanup_circles.py
To Pycharm!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap Animation
- Animation loop
- Bouncing ball mechanics

- Graphics odds and ends
- Demo a few more graphics functions
- cleanup_circles

- Python main - how to process input from command
line

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The main function is where a program starts

- When I run python3 example.py, it will run the code
in the main function - including any function calls

example.py

Python main

def func():
 print("first line of func!")

def main():
 print("first line of pgm!")
 my_helper()

Terminal:
$ python3 example.py

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The main function is where a program starts

- When I run python3 example.py, it will run the code
in the main function - including any function calls

example.py

Python main

def func():
 print("first line of func!")

def main():
 print("first line of pgm!")
 my_helper()

Terminal:
$ python3 example.py
first line of pgm!
first line of func!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- When I run python3 example.py Frankie, the
string “Frankie” becomes an “argument”

- Arguments donʼt do much until we tell main to use them

example.py

Arguments

def func():
 print("first line of func!")

def main():
 print("first line of pgm!")
 my_helper()

Terminal:
$ python3 example.py Frankie
first line of pgm!
first line of func!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We can access a list of arguments like so

example.py

Arguments

import sys

def main():
 args = sys.argv[1:]

 print(args)

Terminal:
$ python3 example.py Frankie 106A DVDs
[Frankie, 106A, DVDs]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- sys.argv includes the file name too, which we “slice” off

example.py

Aside: List slicing

import sys

def main():
 all_args = sys.argv
 #all_args:[example.py, Frankie, 106A, DVDs]
 args = all_args[1:]
 #args:[Frankie, 106A, DVDs]

Terminal:
$ python3 example.py Frankie 106A DVDs

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- In general, list[start:end] will take the “slice” of
the list starting at index start and ending before index
end

- If we omit start or end, it will treat it as 0 or
len(list), respectively

Aside: List slicing

def main():
 list = [5, 6, 7, 8]
 a = list[1:3] # [6, 7]
 b = list[:3] # [5, 6, 7]
 c = list[0:] # [5, 6, 7, 8]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- By default, all arguments are interpreted as strings

example.py

Arguments

import sys

def main():
 args = sys.argv[1:]

 print(args[0] + 1)

Terminal:
$ python3 example.py 10
???

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- By default, all arguments are interpreted as strings

example.py

Arguments

import sys

def main():
 args = sys.argv[1:]

 print(args[0] + 1)

Terminal:
$ python3 example.py 10
Error: Canʼt add int and string

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- By default, all arguments are interpreted as strings
- To interpret arguments as another type, transform them

with type(args[i])
example.py

Arguments

import sys

def main():
 args = sys.argv[1:]

 print(int(args[0]) + 1)

Terminal:
$ python3 example.py 10
11

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- By default, a space specifies a new argument
Arguments

import sys

def main():
 args = sys.argv[1:]

 print(args)
 print(len(args))

Terminal:
$ python3 example.py Frankie loves 106A
[Frankie, loves, 106A]
3

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- By default, a space specifies a new argument
- Make a multiword argument by using quotes in the

command line

Arguments

import sys

def main():
 args = sys.argv[1:]

 print(args)
 print(len(args))

Terminal:
$ python3 example.py “Frankie loves 106A”
[Frankie loves 106A]
1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

cleanup_circles_with_input
- Update cleanup_circles so that:

- The user can specify a number of circles they would
like to clean up with the first argument

- The user can specify the color of the circles with the
second argument

- The user can specify text they would like to display
on the canvas when they win with the third argument

- Print an error message if any of these arguments are
missing

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Write a program that:
- Fills a Canvas with 10 circles with random size and

position
- Allows the user to move a square around with their

mouse
- When the square touches a circle, the circle is

removed
- When all circles are gone, prints “Winner” to the

terminal
- Decompose making the circles and removing a circle

Cleanup circles

Frankie Cerkvenik, CS106A, 2023

If time: mess around with
dvd_screen_saver

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- The animation loop (particularly bouncing ball loop) will
be very helpful for Breakout

- We can make an object move with the mouse by using
the get_mouse_x/y functions and the move_to
function

- We now fully understand the python main function and
can interpret command line arguments to our programs!

- Also list slices :)

Recap

