Dictionaries
{106A: great}

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Housekeeping
- Assignment 4 due Tuesday Aug 1 at 11:59pm , grace
period until Aug 2 11:59
- Midterm scores will be released early next week

- No OH tomorrow :(

- Tea time still on today!

Stanford | ENGINEERING

Computer Science

Today

- Introduce dictionaries
- A whole new data structure!
- Our last data structure!

Stanford | ENGINEERING

Computer Science

What are Dictionaries?
* Dictionaries associate a key with a value

— Key is a unique identifier
- Value is something we associate with that key

Stanford | ENGINEERING

Computer Science

What are Dictionaries?
* Dictionaries associate a key with a value

— Key is a unique identifier
- Value is something we associate with that key

« Examplesin the real world:

- Phonebook

« Keys: names
« Values: phone numbers

— Dictionary
« Keys: words
« Values: word definitions

- US Government
« Keys: Social Security number
« Values: Information about an individual's
employment

Stanford | ENGINEERING

Computer Science

Dictionaries in Python
* Creating dictionaries

— Dictionary start/end with braces
— Key:Value pairs separated by colon

— Each pair is separated by a comma

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}
empty dict = {}

'Frankie' | — 23

ages —»|| 'Barbie' | —— 64

'Ecy'’ —_— 22

Stanford | ENGINEERING

Computer Science

Accessing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | — 23

ages 'Barbie' | —— 64

'Ecy'’ —_—| 22

* Use key to access associated value:
ages|['Frankie'] is 23
ages['Barbie'] is64

Stanford | ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | — 23

'Barbie' | —— 64

ages 'Ecy' |——| 23

* Use key to access associated value:
ages|['Frankie'] is 23
ages['Barbie'] is64
e Can set values like regular variable:
ages['Ecy'] = 23 # on April 25th!
Stanford | ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | — 24

'Barbie' | —— 64

ages 'Ecy' |——| 23

* Use key to access associated value:
ages|['Frankie'] is 23
ages['Barbie'] is64

e Can set values like regular variable:
ages['Ecy'] = 23 # on April 25th!
ages['Frankie'] += 1 # Feb 24! Stanford|ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | — 23

'Barbie' | —— 64

ages 'Ecy' | ——| 22

* Good and bad times with accessing pairs:
ecys _age = ages|['Ecy']
print (ecys age) # prints 22
kens age = ages|['ken'] KeyError: 'ken'

Stanford | ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | — 23

'Barbie' | —— 64

ages 'Ecy' | ——| 22

* Good and bad times with accessing pairs:
ecys _age = ages|['Ecy']
print (ecys age) # prints 22
ages|['ken'] += 1 still KeyError: 'ken'

Stanford | ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | ——| 23

'Barbie' | — 64

ages 'Ecy' —_— 22
‘ken’ —_— 1

* Good and bad times with accessing pairs:
ecys _age = ages|['Ecy']
print (ecys age) # prints 22
ages['ken'] = 1 # adds ‘ken’ : 1 to ages
Stanford | ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | ——| 23

'Barbie' | — 64

ages 'Ecy' —_— 22
‘ken’ —_— 1

 Check membership with in
print((‘allan’ in ages)) # prints False
print((‘Frankie’ in ages)) # prints True

Stanford | ENGINEERING

Computer Science

Changing Elements of Dictionary
* Consider the following dictionary:

ages = {'Frankie': 23, 'Barbie': 64, 'Ecy': 22}

* Like a list of variables that are indexed by keys

'Frankie' | ——| 23

'Barbie' | — 64

ages 'Ecy' —_— 22
‘ken’ —_— 1

* Check membership with in - only for keys!
print((‘allan’ in ages)) # prints False
print((‘Frankie’ in ages)) # prints True
print((22 in ages)) # prints False

Stanford | ENGINEERING

Computer Science

Adding Elements to Dictionary
e Can add pairs to a dictionary:
phone = {}

phone — Empty dictionary

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Adding Elements to Dictionary
e Can add pairs to a dictionary:
phone = {}
phone[‘Pat’] = '555-1212’

phone — ‘Pat’ —> | '555-1212’

Stanford | ENGINEERING

Computer Science

Adding Elements to Dictionary
e Can add pairs to a dictionary:
phone = {}
phone[‘Pat’] = '555-1212’
phone[‘Jenny’] = ‘'867-5309’

phone — ‘Pat’ —_ ‘\555-1212"'

‘Jenny’ |— | ‘867-5309’

Stanford | ENGINEERING

Computer Science

Adding Elements to Dictionary
e Can add pairs to a dictionary:
phone = {}

phone[‘Pat’] = '555-1212’
phone[‘Jenny’] = ‘'867-5309’

phone[‘Pat’] = None

phone — ‘Pat’ -_— None

‘Jenny’ | — | '867-5309’

Stanford | ENGINEERING

Computer Science

Adding Elements to Dictionary

e Can add pairs to a dictionary:

phone = {}

phone|[‘Pat’] ‘555-1212'

phone[‘Jenny’] = ‘'867-5309’

phone[‘Pat’] = None

phone[‘Pat’] = '867-5309’

duplicate values allowed

phone — ‘Pat’ —> | '867-5309’

‘Jenny’ |— | ‘867-5309’

Stanford | ENGINEERING

Computer Science

Looping over a dictionary

'Frankie' | —— 23
ages —» 'Barbie' | — 64
'Ecy' - 22

for key in ages:
print (£f" {key} -> ageslkey]")
the same as
print(key + " -> " + ages|[key])

Terminal:
Frankie -> 23
Barbie -> 64
Ecy ->24 Stanford | ENGINEERING

Computer Science

Dict Review

1. Make a new Dict
animal sounds = {}

2. Put things into the Dict

animal sounds["dog”] = "woof"
animal sounds["cat”] = "meow"
animal sounds["seal”] = "ow ow ow"

3. Get things out of the Dict
dog sound = animal sounds['"dog”] # "woof”

\\dog// ' \\woof//

- \\ 144 \\ 144
animal sounds — cat — meow

“seal” — “ow ow ow”

Stanford | ENGINEERING

Computer Science

A Word About Keys/Values

« Keys must be immutable types
- E.g., int, float, string

- Keys cannot be changed in place

- If you want to change a key, need to remove key/value
pair from dictionary and then add key/value pair with
new key.

Stanford | ENGINEERING

Computer Science

A Word About Keys/Values

« Keys must be immutable types
- E.g., int, float, string

- Keys cannot be changed in place

- If you want to change a key, need to remove key/value
pair from dictionary and then add key/value pair with
new key.

« Values can be mutable or immutable types
- E.g., int, float, string, lists, dictionaries

- Values can be changed in place

Stanford | ENGINEERING

Computer Science

A Word About Keys/Values

« Keys must be immutable types
- E.g., int, float, string

- Keys cannot be changed in place

- If you want to change a key, need to remove key/value
pair from dictionary and then add key/value pair with
new key.

« Values can be mutable or immutable types
- E.g., int, float, string, lists, dictionaries

- Values can be changed in place

« Dictionaries are mutable

- Changes made to a dictionary in a function persist after
the function is done. Stanford | ENGINEERING

Computer Science

Dictiona-palooza! (Part 1)

ages = {'Frankie': 23, 'Ecy': 22, 'Barbie': 64}
* Function: dict.keys ()
— Returns something similar to a range of the keys in dictionary
— Can use that to loop over all keys in a dictionary:
for key in ages.keys():
print (key)

Terminal:

Frankie
Ecy
Barbie

— Canturn keys () intoalist, using the 1ist
function

>>> list (ages.keys())
Stanford | ENGINEERING

1 : 1 1 1 ' 1 '
['Frankie', 'Ecy', 'Barbie'] Computer Science

Dictiona-palooza! (Part 2)

ages = {'Frankie': 23, 'Ecy': 22, 'Barbie': 64}
* Function: dict.values ()
— Returns something similar to a range of the values in dictionary

— Can use that to loop over all keys in a dictionary:

for value in ages.values():

print (value)

Terminal:

23
22
64

— Canturnvalues () intoalist, usingthe 1ist
function

>>> list (ages.values())
[24, 22, 64] Stanford | ENGINEERING

Computer Science

Dictiona-palooza! (Part 2)

ages = {'Frankie': 23, 'Ecy': 22, 'Barbie': 64}
* Function: dict.items ()
— Returns a range of key, value pairs

— Can use that to loop over all key value pairs in a dictionary:

for key, value in ages.items () :

print (f" {key}, {valuel}l")

Terminal:
Frankie, 23
Ecy, 22
Barbie, 64

Stanford | ENGINEERING

Computer Science

Dictiona-palooza! (Part 3)
ages = {'Frankie': 23, 'Ecy': 22, 'Barbie': 64}

* Function: dict.pop (key)

— Removes key/value pair with the given key. Returns value from that
key/value pair.
print (ages) # {'Frankie': 23, 'Ecy': 22, 'Barbie': 64}
print (ages.pop(‘Ecy’)) # 22
print(ages) # {'Frankie': 23, 'Barbie': 64}

* Function: dict.clear ()

— Removes all key/value pairs in the dictionary.
ages.clear ()
print (ages) # {}

Stanford | ENGINEERING

Computer Science

Functions You Can Apply
ages = {'Frankie': 23, 'Ecy': 22, 'Barbie': 64}
* Function: len (dict)

— Returns number of key/value pairs in the dictionary

print(len(ages)) # 3

* Function: del dict[key]
— Removes key/value pairs in the dictionary.
— Similar to pop, but doesn't return anything.

del ages|['Frankie']
print(ages) # {'Ecy': 22, 'Barbie': 64}

Stanford | ENGINEERING

Computer Science

phonebook.py

- Write a program that reads in a csv with this format:
namel, phone numberl
name2, phone number2

- And stores the data in a dictionary structured like so:

{

‘namel’ : ‘phone numberl’,
‘name2’ : ‘phone number2’

}

- Also takes in as command line arguments any number of
names and prints the associated phone number, if it
exists!

Stanford | ENGINEERING

Computer Science

To Pycharm! phonebook.py

Stanford | ENGINEERING

Computer Science

count_words.py

- Write a program that takes in a filename as command
line input

- Decompose a function that reads every line in the file
and counts the number of times each word, case
insensitive, appears - save this in a dictionary and
return. Don’t worry about punctuation

- Write doctests to test before moving on

- The command line should also take in any number of
words, and print the number of times that word appears
in the file

Stanford | ENGINEERING

Computer Science

To Pycharm! count_words

Stanford | ENGINEERING

Computer Science

(on your own)Modify data_processing

- Write a program that allows the user to specify the
filename of a CSV, a column number in that CSV, a
min_frequency and a max_frequency, and any number
of string values

- Display a bar chart representing the frequency with
which each string value appears in the specified column
in the dataset

- (Demo in the started code)

- Usethe pre-mademake bar chart function

- Decompose logic to process the file

- Use it on our anonymized Assn0 answers!

Stanford | ENGINEERING

Computer Science

(on your own)data_processing_dict.py
Milestones

Understand provided code

. Write function that returns a dictionary of label:
frequency for each string in the given list of values

. Test above function on small dataset

Modify make_bar_chart to expect a dictionary, not two
lists

Call make_bar_chart

Stanford | ENGINEERING

Computer Science

106A Milestone: Core Datastructures

_datasets can be represented by:

- Dictionaries \'4

- Lists

- Strings ' 4

Stanford | ENGINEERING
Frankie Cerkvenik, CS106A, 2023 Computer Science

Recap

- Dictionaries exist

- They associate keys to values, and we can look up values
using keys

- They look like this:

keyl: wvaluel,
key2: wvalueZ2,

- Can access/change values withdict [key]

Stanford | ENGINEERING

Computer Science

