Classes

Not like the class you are taking - a kind you can make!

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Housekeeping
Sorry for the recorded lecture! Thanks for tuning in!

BiasBars (assignment 5) has been released - it is longer
but very interesting! We hope you enjoy

It is due August 8 (which is Tuesday) at 11:59- grace
period until August 9

Stanford | ENGINEERING

Computer Science

Today

- We are moving into “exposure” concepts
- concepts that you will certainly see again,
- But aren’t super the focus of 106A
- Won’t be as emphasized on the homework
assignments, but fair game for the final!
- Today and tomorrow (and into next week): Classes
- How to define your own custom type!
- Object-oriented programming

Stanford | ENGINEERING

Computer Science

How would you make this?

@ @ Bouncing Ball

Stanford | ENGINEERING

Computer Science

Python’s Variable Types

Int
Boolean
Float
String
List

Dictionary

Frankie Cerkvenik, CS106A, 2023

Stanford | ENGINEERING

Computer Science

“Custom” variable types
- Bit

bit = Bit(filename)
- Simplelmage

image = SimpleImage (filename)
- Canvas

canvas = Canvas (200, 400, ‘Example’)

Stanford | ENGINEERING

Computer Science

You can make your own types!

- Someone (not the Python people - someone at
Stanford!) wrote the Canvas type (its in graphics.py)

- You import the Canvas type with:
from graphics import Canvas

- You use the canvas type when you make a variable of
type Canvas:

my canvas = Canvas (200, 400, ‘example’)

Stanford | ENGINEERING

Computer Science

Our first custom type: ServicelLine

- Say we wanted a variable to store information that
represented a ServicelLine - like at the grocery store or
the DMV

- First, we need to define a “line”- what pieces of
information do we need to store a line?
- Name - what the line is for (eg “DMV”, “Deli”,
“waterslide”)
- Names of the peoplein line (a list of some sort)
- Average wait time per person

- Next, we need to implement a “class” that stores and
manages those pieces of information

Stanford | ENGINEERING

Computer Science

Classes need 4 things

A name (like ServiceLine!)

Constructor
What happens when you make a ServiceLine

Instance Variables
What sub variables each ServicelLine stores

Methods
What functions you can call on a ServiceLine

Stanford | ENGINEERING

Computer Science

Example of a class in Python

serviceline.py:

lclass Serviceline:

def init (self, name, avg wait time):
self . .name = name
self .people waiting = []
self.wait time = 10

def add person(self, name):
self.people waiting.append (name)

def serve next person(self):
self.people waiting.pop ()

def get wait time (self):
return self.wait time * len(self.people waiting)

Stanford [ENGINEERING

Computer Science

Example of a class in Python

serviceline.py:

lclass Serviceline:
def __init (self, name, avg wait time mins) :)
self.name = name

self .people waiting = []

9 self .wait time = avg wait time mins

J

- This is the constructor - it is the code that runs when someone
makes a new “ServicelLine” type variable
- Ittakes in a name and an average wait time as parameters - self is a
special, invisible-ish parameter that means “the variable I’'m currently
making”
making Serviceline variable runs the constructor
dmv line = ServiceLine (“DMV”, 90)
deli line = Serviceline(“Deli”, 15)

Example of a class in Python

- These are “methods” - things ServicelLine variables can do

dmv line = ServiceLine (“DMV”, 90)
dmv _line.get wait time() # returns 0
adds ‘frankie’ to internal list
dmv line.add person(“Frankie”)

dmv_line.get wait time() # returns 90

/ﬁéf add person(self, name): <‘\
self.people waiting.append (name)

def serve next person|():
self.people waiting.pop (self)

def get wait time (self):
\\‘ return self.wait time * len(self.people_waitinql/

Stantord ENGINEERING
Computer Science

Frankie Cerkvenik, CS106A, 2023

What are Classes and Objects?

o Classes are like blueprints
— They provide a template for a kind of object
— They define a new type
- ServicelLineis a class

. Objects are instances of Classes
— Can have multiple objects of the same Class type

- E.g.,dmv_lineanddeli line aretwo different
instances of ServiceLine

— They each have their own versions of their internal
variables - called instance variables!

- E.g.,dmv_1line had a wait time of 90 and a list of length 1,
anddeli line had a waittime of 15 and a list of length 0

To pycharm: lines.py

Lets see it in action

Stanford | ENGINEERING

Computer Science

Objects are Mutable

« When you pass an object as a parameter, mutations
in that function persist after function ends

from service line import Serviceline

def big rush(line, lots of people):
for person in people:
line.add person (person)

def main() :
dmv line = ServiceLine ("DMV", 90)
big rush(dmv line, ["frankie", "ecy", "chris"])
print (dmv_line.get wait time()) # prints 90%*3!

Remember: moves never persist!

« Thisisn’t special for classes - but good to remember!

from service line import Serviceline

def big rush(line, lots of people):
line = Serviceline (“New Line”, 90)
for person in people:
line.add person (person)

def main () :
dmv line = ServiceLine ("DMV", 90)
big rush(dmv line, ["frankie", "ecy", '"chris"])
print (dmv_line.get wait time()) # prints 90*0!

General Form for Writing a Class
* Filename for class is usually classname.py

— Filename is usually lowercase version of class name in
file

blass ClassName:

def init (self, wvar val):
constructor sets up instance variables
self.instance var = var val

def methodl (self) :
methods do something with an instance
they always take in ‘self’

def method2 (self, x):
methods can take in other params too!

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Constructor of a Class

- Called when a new object is being created

— Does not explicitly specify a return value
— New object is created and returned

« Can think of constructor as the "factory" that
creates new objects

— Responsible for initializing object (setting initial values)

— Generally, where instance variables are created (with
self)

class Classname:
def init (self, .)):
create instance wvariables

self.instance;variable_name = value

Stanford | ENGINEERING

Computer Science

Instance Variables

« Instance variables are variables associated with
objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class
— They’re accessed in the class definition using self:

self.variable name= value

— Self really refers to the object that a method is called on
class Counter:
def init (self):
self.count = 0 <4=smmmm Countisaninstance
variable for the

def next (self): counter class!
self.count += 1

Stanford | ENGINEERING

Computer Science

Instance Variables

- Each Counter has its own count - trace!

Elass Counter:
def init (self):
self.count = 0

def next(self) :
self.count +=1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl .next ()
counter2 .next ()

Stanford | ENGINEERING

Computer Science

Instance Varia

bles

- Each Counter has its own count - trace!

class Counter: counterl—b‘

def init (self):
self.count = 0

def next(self) :
self.count +=1

2927

from counter import Counter

def main|() :

| counterl

= Counter () |

counter?2

counterl.
counterl.
counter?2.

= Counter ()
next ()
next ()
next ()

Stanford | ENGINEERING

Computer Science

Instance Varia

bles

- Each Counter has its own count - trace!

|class Counter: counterl—b‘

2927

| __init (self) self

self count =

def next(self) :
self.count +=1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl .next ()
counter2 .next ()

Stanford | ENGINEERING

Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 0 ‘
def init (self): self
(self.count = 5_]

def next(self) :
self.count +=1

from counter import Counter

def main () :

| counterl = Counter() |
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘0 ‘

2?77
def next (self): Counterz—}‘ s ‘

self.count += 1

from counter import Counter

def main() :
counterl = Counter ()
| counter2 = Counter() |
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

|class Counter: counterl \

| __init (self)]

self count =

self.count ‘0 ‘

2?77
def next (self): Counterz—}‘ s ‘

self.count += 1 self

from counter import Counter

def main() :
counterl = Counter ()
| counter2 = Counter() |
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterlmmmp| self.count ‘ 0 ‘
def init (self):
(self.count = 6_]
def next(self) : counter2 self.count‘ 0 ‘
self.count += 1 self

from counter import Counter

def main() :
counterl = Counter ()
| counter2 = Counter() |
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘0 ‘

counter2 =)

def next (self): self.count‘ 0‘

self.count += 1

from counter import Counter

def main|() :
counterl = Counter ()
counter2 = Counter ()
l counterl . next ()]
counterl.next () Stanford | ENGINEERING

counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterlmsmp| self.count ‘ 0 ‘
def init (self): self
self.count = 0
| def next (self): counter2 self.count‘ 0 ‘

self.count += 1

from counter import Counter

def main|() :
counterl = Counter ()
counter2 = Counter ()
l counterl . next ()]
counterl.next () Stanford | ENGINEERING

counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 1 ‘
def init (self): self
self.count = 0
def next (self): counter2 self.count‘ 0 ‘
| self.count += 1 |

from counter import Counter

def main|() :
counterl = Counter ()
counter2 = Counter ()
l counterl . next ()]
counterl.next () Stanford | ENGINEERING

counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘1 ‘

counter2 =)

def next (self): self.count‘ 0‘

self.count += 1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()

[counteril. .next ()] Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 1 ‘
def init (self): self
self.count = 0
| def next (self): counter2 self.count‘ 0 ‘

self.count += 1

from counter import Counter

def main() :

counterl = Counter ()
counter2 = Counter ()
counterl .next ()

[counteril. .next ()] Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 2 ‘
def init (self): self
self.count = 0
def next (self): counter2 self.count‘ 0 ‘
| self.count += 1 |

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()

[counteril. .next ()] Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘2 ‘

counter2 =)

def next (self): self.count‘ 0‘

self.count += 1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
[counter?2.next ()] Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘2 ‘

| def next(self):] counter2 self.count‘ 0 ‘

self.count += 1 self

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
[counter?2.next ()] Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘2 ‘

def next (self): counter2 self.count‘ ! ‘

l self.count += 1] self

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
[counter?2.next ()] Computer Science

Methods (Functions) in Class

« Methods (name used for functions in objects)

- Syntax:
def method name (self, additional params):
body

« Works like a regular function in Python

— Can return values (like a regular function)

— Has access to instance variables (through sel£):
self.variable name= value

— Called using an object:
object name.method name(additional parameters)

— Recall, parameter self is automatically set by Python as
the object that this method is being called on
* You write: countl.next value()
* Python treats it as: next value (countl)

Next class: bouncing_balls.py
woohoo!

Stanford | ENGINEERING
Computer Science

Recap
We can define our own custom types @& @0 @0 @2

To do so, we define a Class with a constructor, instance
variables and methods

The we can use as many variables of that type as we
want! And they are all independent!

Stanford | ENGINEERING

Computer Science

