
Frankie Cerkvenik, CS106A, 2023

Classes
Not like the class you are taking - a kind you can make!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Sorry for the recorded lecture! Thanks for tuning in!

- BiasBars (assignment 5) has been released - it is longer
but very interesting! We hope you enjoy

- It is due August 8 (which is Tuesday) at 11:59- grace
period until August 9

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We are moving into “exposure” concepts
- concepts that you will certainly see again,
- But arenʼt super the focus of 106A
- Wonʼt be as emphasized on the homework

assignments, but fair game for the final!
- Today and tomorrow (and into next week): Classes

- How to define your own custom type!
- Object-oriented programming

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

How would you make this?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Int

- Boolean

- Float

- String

- List

- Dictionary

Pythonʼs Variable Types

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Bit

bit = Bit(filename)

- SimpleImage

image = SimpleImage(filename)

- Canvas

canvas = Canvas(200, 400, ‘Example’)

“Custom” variable types

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Someone (not the Python people - someone at
Stanford!) wrote the Canvas type (its in graphics.py)

- You import the Canvas type with:

from graphics import Canvas

- You use the canvas type when you make a variable of
type Canvas:

my_canvas = Canvas(200, 400, ‘example’)

You can make your own types!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Say we wanted a variable to store information that
represented a ServiceLine - like at the grocery store or
the DMV

- First, we need to define a “line”- what pieces of
information do we need to store a line?
- Name - what the line is for (eg “DMV”, “Deli”,

“waterslide”)
- Names of the people in line (a list of some sort)
- Average wait time per person

- Next, we need to implement a “class” that stores and
manages those pieces of information

Our first custom type: ServiceLine

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Methods
What functions you can call on a ServiceLine

Classes need 4 things

1

2

3

0 A name (like ServiceLine!)

Instance Variables
What sub variables each ServiceLine stores

Constructor
What happens when you make a ServiceLine

Piech + Sahami,
CS106A, Stanford
University

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

class ServiceLine:
 def __init__(self, name, avg_wait_time):
 self.name = name
 self.people_waiting = []
 self.wait_time = 10

 def add_person(self, name):
 self.people_waiting.append(name)

 def serve_next_person(self):
 self.people_waiting.pop()

 def get_wait_time(self):
 return self.wait_time * len(self.people_waiting)

Example of a class in Python
serviceline.py:

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

class ServiceLine:
 def __init__(self, name, avg_wait_time_mins):
 self.name = name
 self.people_waiting = []
 self.wait_time = avg_wait_time_mins

 def add_person(self, name):
 self.people_waiting.append(name)

 def serve_next_person():
 self.people_waiting.pop()

 def get_wait_time():
 return self.wait_time * len(self.people_waiting)

Example of a class in Python
serviceline.py:

- This is the constructor - it is the code that runs when someone
makes a new “ServiceLine” type variable

- It takes in a name and an average wait time as parameters - self is a
special, invisible-ish parameter that means “the variable Iʼm currently
making”

making ServiceLine variable runs the constructor
dmv_line = ServiceLine(“DMV”, 90)
deli_line = ServiceLine(“Deli”, 15)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

class ServiceLine:
 def __init__(self, name, avg_wait_time_mins):
 self.name = name
 self.people_waiting = []
 self.wait_time = avg_wait_time_mins

 def add_person(self, name):
 self.people_waiting.append(name)

 def serve_next_person():
 self.people_waiting.pop(self)

 def get_wait_time(self):
 return self.wait_time * len(self.people_waiting)

Example of a class in Python

serviceline.py:

- These are “methods” - things ServiceLine variables can do

dmv_line = ServiceLine(“DMV”, 90)
dmv_line.get_wait_time() # returns 0
adds ‘frankie’ to internal list
dmv_line.add_person(“Frankie”)

dmv_line.get_wait_time() # returns 90

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

What are Classes and Objects?
• Classes are like blueprints

– They provide a template for a kind of object
– They define a new type
– ServiceLine is a class

• Objects are instances of Classes
– Can have multiple objects of the same Class type
– E.g., dmv_line and deli_line are two different

instances of ServiceLine
– They each have their own versions of their internal

variables - called instance variables!
– E.g., dmv_line had a wait time of 90 and a list of length 1,

and deli_line had a wait time of 15 and a list of length 0

Frankie Cerkvenik, CS106A, 2023

To pycharm: lines.py
Lets see it in action

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Objects are Mutable
• When you pass an object as a parameter, mutations

in that function persist after function ends
from service_line import ServiceLine

def big_rush(line, lots_of_people):
 for person in people:
 line.add_person(person)

def main():
 dmv_line = ServiceLine("DMV", 90)
 big_rush(dmv_line, ["frankie", "ecy", "chris"])
 print(dmv_line.get_wait_time()) # prints 90*3!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Remember: moves never persist!
• This isnʼt special for classes - but good to remember!
from service_line import ServiceLine

def big_rush(line, lots_of_people):
 line = ServiceLine(“New Line”, 90)
 for person in people:
 line.add_person(person)

def main():
 dmv_line = ServiceLine("DMV", 90)
 big_rush(dmv_line, ["frankie", "ecy", "chris"])
 print(dmv_line.get_wait_time()) # prints 90*0!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Piech + Sahami,

CS106A, Stanford

University

General Form for Writing a Class
• Filename for class is usually classname.py

– Filename is usually lowercase version of class name in
file

0class ClassName:
 def __init__(self, var_val):
 # constructor sets up instance variables
 self.instance_var = var_val

 def method1(self):
 # methods do something with an instance
 # they always take in ‘self’
 def method2(self, x):
 # methods can take in other params too!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Constructor of a Class
- Called when a new object is being created

– Does not explicitly specify a return value
– New object is created and returned

• Can think of constructor as the "factory" that
creates new objects

– Responsible for initializing object (setting initial values)
– Generally, where instance variables are created (with

self)

 class Classname:
 def __init__(self, …):

create instance variables
self.instance_variable_name = value

Piech + Sahami,

CS106A, Stanford

University

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

• Instance variables are variables associated with
objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Theyʼre accessed in the class definition using self:

self.variable_name = value

– Self really refers to the object that a method is called on

Instance Variables

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

count is an instance
variable for the
counter class!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 ????

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 ????

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 ????

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 ????

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 self.count 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 1

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 1

counter2 self.count 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 1

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 1

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Methods (Functions) in Class
• Methods (name used for functions in objects)

– Syntax:
def method_name(self, additional_params):

body

• Works like a regular function in Python
– Can return values (like a regular function)
– Has access to instance variables (through self):

self.variable_name = value

– Called using an object:
object_name.method_name(additional parameters)

– Recall, parameter self is automatically set by Python as
the object that this method is being called on
• You write: count1.next_value()
• Python treats it as: next_value(count1)

Frankie Cerkvenik, CS106A, 2023

Next class: bouncing_balls.py
woohoo!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We can define our own custom types 🧠🧠🧠🧠

- To do so, we define a Class with a constructor, instance
variables and methods

- The we can use as many variables of that type as we
want! And they are all independent!

Recap

