Classes
Take 2

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Housekeeping
- Assignment 5 is due on tonight

- Assignment 6 (last assignment!) will be released tonight
and is due next Tuesday

- Final exam info released!

- Rest of the quarter:
- Lecture all this week
- Next week:
- Final lecture on Tuesday (AMA),
- Thursday: no lecture, extra OH during lecture
time
- Friday, final exam

Stanford | ENGINEERING

Computer Science

Today

- Recap Classes
- What are they
- How do we make them
- How do we use them

- Code demo: many bouncing balls
- Exciting stuff

Stanford | ENGINEERING

Computer Science

What are classes?

- They are our way of creating our own custom types
- Bundle several variables together and give them
special functions
- Classes you’ve used:

from graphics import Canvas

my canvas = Canvas (200, 400, ‘example’)
from simpleimage import SimplelImage

my image = SimpleImage (filename)

Stanford | ENGINEERING

Computer Science

General Form for Writing a Class
* Filename for class is usually classname.py

— Filename is usually lowercase version of class name in
file

blass ClassName:

def init (self, wvar val):
constructor sets up instance variables
self.instance var = var val

def methodl (self) :
methods do something with an instance
they always take in ‘self’

def method2 (self, x):
methods can take in other params too!

Stanford | ENGINEERING

Computer Science

Frankie Cerkvenik, CS106A, 2023

Example of a class in Python

serviceline.py:

lclass Serviceline:

def init (self, name, avg wait time):
self . .name = name
self .people waiting = []
self.wait time = 10

def add person(self, name):
self.people waiting.append (name)

def serve next person(self):
self.people waiting.pop ()

def get wait time (self):
return self.wait time * len(self.people waiting)

Stanford [ENGINEERING

Computer Science

Example of a class in Python

serviceline.py:

lclass Serviceline:
def __init (self, name, avg wait time mins) :)
self.name = name

self .people waiting = []

9 self .wait time = avg wait time mins

J

- This is the constructor - it is the code that runs when someone
makes a new “ServicelLine” type variable
- Ittakes in a name and an average wait time as parameters - self is a
special, invisible-ish parameter that means “the variable I’'m currently
making”
making Serviceline variable runs the constructor
dmv line = ServiceLine (“DMV”, 90)
deli line = Serviceline(“Deli”, 15)

Example of a class in Python

- These are “methods” - things ServicelLine variables can do

dmv line = ServiceLine (“DMV”, 90)
dmv _line.get wait time() # returns 0
adds ‘frankie’ to internal list
dmv line.add person(“Frankie”)

dmv_line.get wait time() # returns 90

/ﬁéf add person(self, name): <‘\
self.people waiting.append (name)

def serve next person|():
self.people waiting.pop (self)

def get wait time (self):
\\‘ return self.wait time * len(self.people_waitinql/

Stantord ENGINEERING
Computer Science

Frankie Cerkvenik, CS106A, 2023

Using a class in Python

« When you pass an object as a parameter, mutations
in that function persist after function ends

from service line import Serviceline

def main () :
dmv line = ServiceLine ("DMV", 90)
dmv_line.add person("Frankie'")
print (dmv_line.wait time)
print (dmv line.people waiting)

Using a class in Python

« When you pass an object as a parameter, mutations
in that function persist after function ends

from service line import Serviceline

def main|() :
dmv line = ServiceLine ("DMV", 90)
dmv_line.add person("Frankie'")
print (dmv_line.wait time) # prints 90
print (dmv_line.people waiting) # [‘Frankie’]

dmv _line.serve next person()
print (dmv_line.people waiting) # []

Objects are Mutable

« When you pass an object as a parameter, mutations
in that function persist after function ends

from service line import Serviceline

def big rush(line, lots of people):
for person in people:
line.add person (person)

def main() :
dmv line = ServiceLine ("DMV", 90)
big rush(dmv line, ["frankie", "ecy", "chris"])
print (dmv line.people waiting)
[‘frankie’, ‘ecy’, ‘chris’]

Remember: moves never persist!

« Thisisn’t special for classes - but good to remember!

from service line import Serviceline

def big rush(line, lots of people):
line = Serviceline (“New Line”, 90)
for person in people:
line.add person (person)

def main|() :
dmv line = ServiceLine ("DMV", 90)
big rush(dmv line, ["frankie", "ecy", '"chris"])
print (dmv_line.people waiting) # prints []!

Questions?

Instance Varia

bles

- Each Counter has its own count - trace!

class Counter: counterl—b‘

def init (self):
self.count = 0

def next(self) :
self.count +=1

2927

from counter import Counter

def main|() :

| counterl

= Counter () |

counter?2

counterl.
counterl.
counter?2.

= Counter ()
next ()
next ()
next ()

Stanford | ENGINEERING

Computer Science

Instance Varia

bles

- Each Counter has its own count - trace!

|class Counter: counterl—b‘

2927

| __init (self) self

self count =

def next(self) :
self.count +=1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl .next ()
counter2 .next ()

Stanford | ENGINEERING

Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 0 ‘
def init (self): self
(self.count = 5_]

def next(self) :
self.count +=1

from counter import Counter

def main () :

| counterl = Counter() |
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘0 ‘

2?77
def next (self): Counterz—}‘ s ‘

self.count += 1

from counter import Counter

def main() :
counterl = Counter ()
| counter2 = Counter() |
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

|class Counter: counterl \

| __init (self)]

self count =

self.count ‘0 ‘

2?77
def next (self): Counterz—}‘ s ‘

self.count += 1 self

from counter import Counter

def main() :
counterl = Counter ()
| counter2 = Counter() |
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterlmmmp| self.count ‘ 0 ‘
def init (self):
(self.count = 6_]
def next(self) : counter2 self.count‘ 0 ‘
self.count += 1 self

from counter import Counter

def main() :
counterl = Counter ()
| counter2 = Counter() |
counterl .next ()
counterl.next () Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘0 ‘

counter2 =)

def next (self): self.count‘ 0‘

self.count += 1

from counter import Counter

def main|() :
counterl = Counter ()
counter2 = Counter ()
l counterl . next ()]
counterl.next () Stanford | ENGINEERING

counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterlmsmp| self.count ‘ 0 ‘
def init (self): self
self.count = 0
| def next (self): counter2 self.count‘ 0 ‘

self.count += 1

from counter import Counter

def main|() :
counterl = Counter ()
counter2 = Counter ()
l counterl . next ()]
counterl.next () Stanford | ENGINEERING

counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 1 ‘
def init (self): self
self.count = 0
def next (self): counter2 self.count‘ 0 ‘
| self.count += 1 |

from counter import Counter

def main|() :
counterl = Counter ()
counter2 = Counter ()
l counterl . next ()]
counterl.next () Stanford | ENGINEERING

counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘1 ‘

counter2 =)

def next (self): self.count‘ 0‘

self.count += 1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()

[counteril. .next ()] Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 1 ‘
def init (self): self
self.count = 0
| def next (self): counter2 self.count‘ 0 ‘

self.count += 1

from counter import Counter

def main() :

counterl = Counter ()
counter2 = Counter ()
counterl .next ()

[counteril. .next ()] Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counterl==m)| self.count ‘ 2 ‘
def init (self): self
self.count = 0
def next (self): counter2 self.count‘ 0 ‘
| self.count += 1 |

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()

[counteril. .next ()] Stanford | ENGINEERING
counter?2.next () Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘2 ‘

counter2 =)

def next (self): self.count‘ 0‘

self.count += 1

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
[counter?2.next ()] Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘2 ‘

| def next(self):] counter2 self.count‘ 0 ‘

self.count += 1 self

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
[counter?2.next ()] Computer Science

Instance Variables

- Each Counter has its own count - trace!

class Counter: counter] s
def init (self):

self.count = 0

self.count ‘2 ‘

def next (self): counter2 self.count‘ ! ‘

l self.count += 1] self

from counter import Counter

def main() :
counterl = Counter ()
counter2 = Counter ()
counterl .next ()
counterl.next () Stanford | ENGINEERING
[counter?2.next ()] Computer Science

Animal class

Let’s make a class to represent an animal
Animals should at the very least know their name (like
“Dog” “Cat” “Lion” etc)
What other information (aka instance variables should an
Animal know about itself?)

- Name

- Sound

- ?(if time - design your own!)
What should an animal be able to do?

- Speak (print its sound)

- ?(if time - design your own!)

Stanford | ENGINEERING

Computer Science

To Pycharm!

animal.py and zoo.py

We are ready!
Lets make some BouncyBalls

Bouncy Balls

Write a program that takes in as command line
arguments a number of balls and a color
Create that number of circles of that color on a canvas
with random positions
Make each ball bounce around with random and
independent trajectories

- We will use change_x and change_y of -1/1

Stanford | ENGINEERING

Computer Science

Goal

(Don’t worry about my canvas being in dark mode)

2 Canvas

Stanford | ENGINEERING

Computer Science

Stepl: BouncyBall class
variables/constructor

- Make a class that represents one bouncing ball in our

goal program
- What pieces of information does a bouncy ball need to
track?
- Thecanvasitis a part of
- The actual oval object on the canvas
-2

Stanford | ENGINEERING

Computer Science

To Pycharm!

Step2: BouncyBall class methods

Make a class that represents one bouncing ball in our

goal program
What pieces of information does a bouncy ball need to
track?
- Thecanvasitis a part of
- The actual oval object on the canvas
- Its own velocity (change_y and change_x)
What does a bouncy ball need to be able to do?
- Move, and bounce when it should

Stanford | ENGINEERING

Computer Science

To Pycharm!

Step3: Use the BouncyBall class

- Write a function (which you should call from main in
animate_bouncyballs.py) that:
- Creates all the bouncy balls we need
- Returns a list of all the bouncy balls we made
- Test by calling it from main and looking at the canvas

Stanford | ENGINEERING

Computer Science

Step4: Animate!

- Introduce an animation loop that causes all of the
bouncy balls to bounce around the screen~
- Run and admire your creation

Stanford | ENGINEERING

Computer Science

Recap
We can define our own custom types @& @0 @0 @2

To do so, we define a Class with a constructor, instance
variables and methods
- Instance variables: What does a class instance know
about itself?
- Methods: What can a class instance do?

Then we can use as many variables of that type as we

want! And they are all independent!

Stanford | ENGINEERING

Computer Science

