
Frankie Cerkvenik, CS106A, 2023

Classes
Take 2

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Assignment 5 is due on tonight

- Assignment 6 (last assignment!) will be released tonight
and is due next Tuesday

- Final exam info released!

- Rest of the quarter:
- Lecture all this week
- Next week:

- Final lecture on Tuesday (AMA),
- Thursday: no lecture, extra OH during lecture

time
- Friday, final exam

Housekeeping

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Recap Classes
- What are they
- How do we make them
- How do we use them

- Code demo: many bouncing balls
- Exciting stuff

Today

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- They are our way of creating our own custom types
- Bundle several variables together and give them

special functions
- Classes youʼve used:
from graphics import Canvas

my_canvas = Canvas(200, 400, ‘example’)

from simpleimage import SimpleImage

my_image = SimpleImage(filename)

What are classes?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

Piech + Sahami,

CS106A, Stanford

University

General Form for Writing a Class
• Filename for class is usually classname.py

– Filename is usually lowercase version of class name in
file

0class ClassName:
 def __init__(self, var_val):
 # constructor sets up instance variables
 self.instance_var = var_val

 def method1(self):
 # methods do something with an instance
 # they always take in ‘self’
 def method2(self, x):
 # methods can take in other params too!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

class ServiceLine:
 def __init__(self, name, avg_wait_time):
 self.name = name
 self.people_waiting = []
 self.wait_time = 10

 def add_person(self, name):
 self.people_waiting.append(name)

 def serve_next_person(self):
 self.people_waiting.pop()

 def get_wait_time(self):
 return self.wait_time * len(self.people_waiting)

Example of a class in Python
serviceline.py:

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

class ServiceLine:
 def __init__(self, name, avg_wait_time_mins):
 self.name = name
 self.people_waiting = []
 self.wait_time = avg_wait_time_mins

 def add_person(self, name):
 self.people_waiting.append(name)

 def serve_next_person():
 self.people_waiting.pop()

 def get_wait_time():
 return self.wait_time * len(self.people_waiting)

Example of a class in Python
serviceline.py:

- This is the constructor - it is the code that runs when someone
makes a new “ServiceLine” type variable

- It takes in a name and an average wait time as parameters - self is a
special, invisible-ish parameter that means “the variable Iʼm currently
making”

making ServiceLine variable runs the constructor
dmv_line = ServiceLine(“DMV”, 90)
deli_line = ServiceLine(“Deli”, 15)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

class ServiceLine:
 def __init__(self, name, avg_wait_time_mins):
 self.name = name
 self.people_waiting = []
 self.wait_time = avg_wait_time_mins

 def add_person(self, name):
 self.people_waiting.append(name)

 def serve_next_person():
 self.people_waiting.pop(self)

 def get_wait_time(self):
 return self.wait_time * len(self.people_waiting)

Example of a class in Python

serviceline.py:

- These are “methods” - things ServiceLine variables can do

dmv_line = ServiceLine(“DMV”, 90)
dmv_line.get_wait_time() # returns 0
adds ‘frankie’ to internal list
dmv_line.add_person(“Frankie”)

dmv_line.get_wait_time() # returns 90

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Using a class in Python
• When you pass an object as a parameter, mutations

in that function persist after function ends
from service_line import ServiceLine

def main():
 dmv_line = ServiceLine("DMV", 90)
 dmv_line.add_person("Frankie")
 print(dmv_line.wait_time)
 print(dmv_line.people_waiting)

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Using a class in Python
• When you pass an object as a parameter, mutations

in that function persist after function ends
from service_line import ServiceLine

def main():
 dmv_line = ServiceLine("DMV", 90)
 dmv_line.add_person("Frankie")
 print(dmv_line.wait_time) # prints 90
 print(dmv_line.people_waiting) # [‘Frankie’]

 dmv_line.serve_next_person()
 print(dmv_line.people_waiting) # []

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Objects are Mutable
• When you pass an object as a parameter, mutations

in that function persist after function ends
from service_line import ServiceLine

def big_rush(line, lots_of_people):
 for person in people:
 line.add_person(person)

def main():
 dmv_line = ServiceLine("DMV", 90)
 big_rush(dmv_line, ["frankie", "ecy", "chris"])
 print(dmv_line.people_waiting)
 # [‘frankie’, ‘ecy’, ‘chris’]

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023Piech + Sahami, CS106A, Stanford

University

Remember: moves never persist!
• This isnʼt special for classes - but good to remember!
from service_line import ServiceLine

def big_rush(line, lots_of_people):
 line = ServiceLine(“New Line”, 90)
 for person in people:
 line.add_person(person)

def main():
 dmv_line = ServiceLine("DMV", 90)
 big_rush(dmv_line, ["frankie", "ecy", "chris"])
 print(dmv_line.people_waiting) # prints []!

Questions?

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 ????

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 ????

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 ????

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 ????

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 self.count 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 0

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 1

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 1

counter2 self.count 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 1

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 0

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 0

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Each Counter has its own count - trace!
Instance Variables

from counter import Counter

def main():
counter1 = Counter()
counter2 = Counter()
counter1.next()
counter1.next()
counter2.next()

class Counter:
 def __init__(self):
 self.count = 0

 def next(self):
 self.count += 1

counter1 self.count 2

counter2 self.count 1

self

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Letʼs make a class to represent an animal
- Animals should at the very least know their name (like

“Dog” “Cat” “Lion” etc)
- What other information (aka instance variables should an

Animal know about itself?)
- Name
- Sound
- ? (if time - design your own!)

- What should an animal be able to do?
- Speak (print its sound)
- ? (if time - design your own!)

Animal class

To Pycharm!
animal.py and zoo.py

We are ready!
Lets make some BouncyBalls

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Write a program that takes in as command line
arguments a number of balls and a color

- Create that number of circles of that color on a canvas
with random positions

- Make each ball bounce around with random and
independent trajectories
- We will use change_x and change_y of -1/1

Bouncy Balls

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

(Donʼt worry about my canvas being in dark mode)
Goal

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Make a class that represents one bouncing ball in our
goal program

- What pieces of information does a bouncy ball need to
track?
- The canvas it is a part of
- The actual oval object on the canvas
- ?

Step1: BouncyBall class
variables/constructor

To Pycharm!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Make a class that represents one bouncing ball in our
goal program

- What pieces of information does a bouncy ball need to
track?
- The canvas it is a part of
- The actual oval object on the canvas
- Its own velocity (change_y and change_x)

- What does a bouncy ball need to be able to do?
- Move, and bounce when it should

Step2: BouncyBall class methods

To Pycharm!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Write a function (which you should call from main in
animate_bouncyballs.py) that:
- Creates all the bouncy balls we need
- Returns a list of all the bouncy balls we made

- Test by calling it from main and looking at the canvas

Step3: Use the BouncyBall class

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- Introduce an animation loop that causes all of the
bouncy balls to bounce around the screen~

- Run and admire your creation

Step4: Animate!

Frankie Cerkvenik, CS106A, 2023Frankie Cerkvenik, CS106A, 2023

- We can define our own custom types 🧠🧠🧠🧠

- To do so, we define a Class with a constructor, instance
variables and methods
- Instance variables: What does a class instance know

about itself?
- Methods: What can a class instance do?

- Then we can use as many variables of that type as we
want! And they are all independent!

Recap

