The Internet

Thanks to Mehran Sahami and Chris Piech for today’s slides!

Housekeeping

* Assignment #6 has been released!

 Remaining lecture schedule
— Friday: last content lecture!
— Tuesday: Life after 106A + AMA
— Wednesday: Final review
— Thursday: no lecture, OH during lecture time

* Acknowledging end-of-quarter stress
— Take care of yourselves and each other
— Be proud of what you have accomplished!

Today

e Review classes
— Very briefly

e Let’s talk about the internet!
— How the internet works at a high level

— Learn how we can use classes to implement a key part
of it (make a server!)

<review>

Classes Review

Dog.py life.py
) (N
class Dog: def main() :
def __init__ (self): simba = Dog ()
self.times barked = 0 juno = Dog ()
def bark () : simba.bark ()
print (‘woot’) g?i}iiii]ﬁ)@
self.times barked += 1
) print (simba.__dict_)
print (juno.__dict_)

Classes Review

Dog_py life.py
a8)
[class Dog:) def main():
— simba = Dog ()
def _ _init__ (self): . .
. juno = Dog ()
self.times barked = 0 simba.bark ()

ITK{) .
Juno.bark ()

print ('woof") simba.bark()

self.times barked += 1

print (simba.__dict_)

print (juno.__dict_)

1. What happens when you make a new one?

Classes Review

Dog.py

r

class Dog:

def init self):
self.times barked = 0
de TR (—

print ('woof')
self.times barked += 1

life.py

(

def main() :
simba = Dog ()

Juno = Dog ()
simba.bark ()

Juno.bark ()
simba.bark ()

print (simba.__dict_)

print (juno.__dict_)

2. What variables does each instance store?

Classes Review

Dog_py life.py
r~ ™ é N
class Dog: def main():
def __init__ (self): simba = Dog ()
: _ N Juno = Dog ()
def bark(): simba.bark ()
print ('woof'") jgno.bark()
self.times barked += 1 ;i?ﬁikgiiié{__dict__)
print (juno.__dict_)
. .

2. What methods can you call on an instance?

Classes Review

Dog.py

r

class Dog:
def __init__ (self):
self.times barked = 0

def bark() :
print ('woof')
self.times barked += 1

Terminal:
{ times barked : 2 }
{ times barked : 1 }

life.py

(

def main () :
simba = Dog ()

Juno = Dog ()
simba.bark ()

Juno.bark ()
simba.bark ()

print (simba.__dict_)

print (juno.__dict_)

Did | mention that a class is like a fancy dictionary?

Classes define new variable
types

Piech + Sahami, CS106A, Stanford University

Classes decompose your
program across files

Piech + Sahami, CS106A, Stanford University

</ review>

One reason programming 1S
fun 1s because of the
internet...

Smart Phone Access

Advanced Economies

76 17 K3

Emerging Economies

45 33 ¢ 4 f

B Smartphone
B Mobile
No phone

Learning Goals

1. Write a program that can respond to internet requests

How does your phone
communicate with Facebook?

The program on your phone
talks to the program at

Facebook

Facebook Server

JavaScript
with HTML
are the
languages
of websites

Kotlin is the
language of
Android
phones

Swift is the
language of
Apple
phones

)
I

Facebook Server

Is this
authenticated login? j?
facebook

sahami@cs.stanford.edu

sahami@cs.stanford.edu

is now logged in

mailto:sahami@cs.stanford.edu
mailto:sahami@cs.stanford.edu

Facebook Server

Send me the full name for

sahami@dcs.stanford.edu j?

e

“Mehran Sahami”

Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook Server

Send me the cover photo for

sahamidcs.stanford.edu

Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook Server

Send the profile photo for

sahami@cs.stanford.edu

Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook Server

Send the status for
sahami@dcs.stanford.edu

“teaching”

Status: Mehran is teaching

Set status: |:|

mailto:sahami@cs.stanford.edu

Set the status for Facebook Server

sahami@dcs.stanford.edu
to be “eating” ? | |

“success”

Status: Mehran is teaching

setstaws: [caing |

mailto:sahami@cs.stanford.edu

Facebook Server
Send me the status for

sahami@dcs.stanford.edu

Status: Mehran is eating

L 1

mailto:sahami@cs.stanford.edu

Background: The Internet

The internet is just many programs sending messages (as Strings)

Background: The Internet

Facebook Your computer
datacenter (facebook.com)
>
-G
— [an—. |
(BE=IER (R

The internet is just many programs sending messages (as Strings)

Background: The Internet

Facebook Your computer
datacenter (facebook.com)
>
-G
— [an—. |
[BEETR\ [EEEER\
“‘Server” “Client”

The internet is just many programs sending messages (as Strings)

Background: The Internet

Facebook Your computer
datacenter (facebook.com)
>
= <Gez‘ status for “Ecy King” —
(=) A /FEER
“Server” “request” “Client”

The internet is just many programs sending messages (as Strings)

Background: The Internet

Facebook ‘response’ Your computer
datacenter , 4 (facebook.com)
“Being super TA”
>
-G
— [an—. |
[BEETR\ [EEEER\
“‘Server” “Client”

The internet is just many programs sending messages (as Strings)

Background: The Internet

Facebook ‘response’ Your computer
datacenter , 4 (facebook.com)
“Being super TA”
[
-G
—) [an—. |
/ EFET R Get status for “Ecy King” e
“‘Server”) i “Client”
request

The internet is just many programs sending messages (as Strings)

There are (generally) two
types of internet programs:
Servers and Clients

Internet 101

Computers on the internet

G pyramidaof gza - Goog G hotelsnearthe pyram

€ [hups /www.google.com

V Google Maps
o Google

Join the ¢ birt
destination: the Pyramids /\

iay tour at our 2nd hotels near the pyramids.

s near Giza Pyramids, Cair, Egypt. Book Your Hotel

"t liden

Servers are computers (running code)

Facebook Server

® © ® B prineville - Google Maps X

& C 1 @& Secure https://www.google.com/maps/place/Prineville,+OR+97754/@40.9703226,-122.0642667,6z/data=!4m5!3m4!1s... %

oKennewick But

Portland
F Facebook’s closest
Salem
o
|]
datacenter is here
[e] o
OREG! Boise |
o (
Nar?npa IDAHO
Poc:
Twin Falls
Medford °
o
S
Redding
o
Reno NEVADA
(o}
S f Humboldt-Toiyabe
acragwen 2 National Forest
San Frangisco
St G%orge
| am here
Death Valley
& WAL National Park Las Vegas
o
Google I
Bakersfield
Map data ©2017 Google, INEGI Terms Send feedback 100 n

Facebook Server

e
()
C
—
()
e
C
()
h
T

Facebook Server

The Internet

Facebook Server

The Internet

eating
Facebook Server

The Internet

Facebook Server

The Internet

Facebook Server

e
]
-
—
()
e
C
]
h
T

Many computers can connect
to the same server

The Internet

Facebook
datacenter

RE, S/OO

/VSE
EE=R ey

X Your mom’s

7\ Server” computer
(linux shell)

Your computer Mehran’s phone
(facebook.com) (facebook app)

&S

(B < jignt

is teaching
11 H L
| “Client

Most of the Internet

Akg «
» the f
o) rong
et eng”
e 03¢

e \ /

Server / Clients

Aka “the cloud” \ \

Aka “the brains”

Today, the server

A server’s main job is to
respond to requests

A Server’s Simple Purpose

Request Response
From a client To the client

Server

A Server’s Simple Purpose

Request String
someRequest serverResponse

@ @ ChatServer

Staﬁ;;né server on port 8080...
getMsgs

newMsg

Added new message
getMsgs

Returned 1 messages
getMsgs

Returned 1 messages
newMsg

Added new message
getMsgs

Returned 1 messages
getMsgs

O ©

©)

Servers on one slide

handle server requests (must be in a
class)

def handle request(self, request): #
return a string response!

turn on the server

def main () :
make an instance of your server class
handler = MyServer ()
start the server!
SimpleServer.run server (handler, 8000)

enjoy

Servers on one slide

handle server requests (must be in a

<:::> class)
[def handle request(self, request):]

return a string response!

(:::> # turn on the server
def main () :

make an instance of your server class

handler = MyServer ()
start the server!
(:::) SimpleServer.run server (handler, 8000)

enjoy

Servers on one slide

handle server requests (must be in a

<:::> class)

def handle request (self, request):

return a string response!

(:::> # turn on the server
raef main () : A

make an instance of your server class
handler = MyServer () # has handleRequest methoq‘

.
start the server!
<:::> SimpleServer.run server (handler, 8000)

enjoy

O ©

©)

Servers on one slide

handle server requests (must be in a
class)
def handle request (self, request):

return a string response!

turn on the server

def main () :
make an instance of your server class

handler = MyServer ()

(# start the server!
SimpleServer.run server (handler, 8000)

enjoy

.

O ©

©)

Servers on one slide

handle server requests (must be in a
class)
def handle request (self, request):

return a string response!

turn on the server

def main () :
make an instance of your server class

handler = MyServer ()

(# start the server!
SimpleServer.run server (handler, 8000)

enjoy

.

L

|

|

]

E .

|
oy

What is a Port?

O ©

©)

Servers on one slide

handle server requests (must be in a
class)
def handle request (self, request):

return a string response!

turn on the server

def main () :
make an instance of your server class

handler = MyServer ()

(# start the server!
SimpleServer.run server (handler, 8000)

enjoy

.

What is a Request?

/* Request has a command */
command (type 1s string)

/* Request has parameters */
params (type 1s dict)

// methods that the server calls on requests
request.command
request.params

Servers on one slide

handle server requests (must be in a

<:::> class)
[def handle request (self, request):]

return a string response!

(:::> # turn on the server
def main () :

make an instance of your server class

handler = MyServer ()
start the server!
<:::> SimpleServer.run server (handler, 8000)

enjoy

class Request:

wiw

Request class packages the key information from an internet request.
def init (self, request command, request params) :
Every request has a command (string)
self.command = request command
Every request has params (dictionary). Can be empty: {}.
self.params = request params

def get params (self):
A 'getter' method to get the params return self.params

def get command (self):
A 'getter' method to get the command return self.command

def str (self):

A special method which allows you to 'print' a request as a string.
return str(self. dict)

First Server Example!

import SimpleServer

We define a class to handle server requests class
class MyFirstServer:
def init (self):
pass

This is the server request callback function.
def handle request(self, request):

print (request)

return 'Happy Thursday, wonderful cslO06a!!!"’

def main():
Make the server handler
handler = MyFirstServer ()
Start the server to handle internet requests at specified port
SimpleServer.run server (handler, 8000)

Who makes requests?

Who makes requests?

Other programs can send requests!

Web browsers can send requests!

Anatomy of a Browser Request

@ ® NewTab X -+

(&5 & http://mywebsite.com/test?first=a&second=b Guest

Anatomy of a Browser Request

@ @ New Tab x -

& @ http:/fmywebsite.com/test?first=a&second=b &3 Guest

The protocol.
Usually http or https

Anatomy of a Browser Request

@ @ New Tab x -+

& <, http:Emywebsite.com]test?first:a&second=b &3 Guest

The webaddress

of the computer

that will respond
to the request

Anatomy of a Browser Request

@ @ New Tab x -+

& < http://mywebsite.comfirst:a&second:b &9 Guest

The request command

Anatomy of a Browser Request

@ @ New Tab x -

& <} http://mywebsite.com,/test{first:a&second:b] &3 Guest

The request params

Hit Counter

Recall Requests

/* Request has a command */

command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.command
request.params

Requests are like Remote Method Calls

Server has a bunch of discrete m
things it candox/

make_toast

Requests are like Remote Method Calls

Server has a bunch of discrete m
things it candox/

get_status

Requests are like Remote Method Calls

get_status

Requests are like Remote Method Calls

request.get command ()

N => “get_status”

get_status

Requests are like Remote Method Calls

To make toast, | need a
parameter

get_status

Requests are like Remote Method Calls

| was given a parameter!
request.params|[“userName”]

get_status

Requests are like Remote Method Calls
A sahami

get status

Requests are like Remote Method Calls

teaching

def handle request (self, request):

cmd = request.command

if cmd == 'get status':
user = request.params|'userName']
status = self.get status (user)

return status

if cmd == 'add user':
user = request.params|['userName']
status = self.add user (user)

Time for a little chat

Chat Server and Client

® 0 ® @ indexhtml x +
€ C (0 O File| /Users/Chris/Document... % & i |]
Chris@ndoto backend % python chat_server.py
Chat Client |Server running...
[{'command': 'getMsgs', 'params': {'index': '0'}}
{'command': 'newMsg', 'params': {'msg': 'Hello world?', ‘'user': 'Chris'}}
2] et i pce {'command': 'getMsgs', 'params': {'index': '@'}}
{'command': 'getMsgs', 'params': {'index': '0'}}
Messages {'command': 'newMsg', 'params': {'msg': 'Here I am!!', ‘user': 'Laura'}}
{'command': 'getMsgs', ‘'params': {'index': '1'}}
{'command': 'newMsg', 'params': {'msg': 'This is fun!', ‘'user': 'Laura'}}
S o oWt {'command': 'getMsgs', 'params': {'index': '2'}}
'{'command': 'getMsgs', 'params': {'index': '1'}}
> [Laura] Here | ami! I{'command': 'newMsg', 'params': {'msg': 'Wahooooo :-)', 'user': 'Chris'}}
> [Laura) This s fun! {'command': 'getMsgs', ‘'params': {'index': '3'}}

{'command': 'newMsg', ‘'params': {'msg': 'We are on the internet...', 'user': 'Chris'}}
{'command': 'getMsgs', 'params': {'index': '4'}}
> (Chris] We are on the internet. {'command': 'newMsg', 'params': {'msg': 'This is like low-budget WhatsApp', 'user': 'Chris'}}
{'command': 'getMsgs', 'params': {'index': '5'}}
{'command': ‘'getMsgs', 'params': {'index': '3'}}
> [Laura] But we made it, which is cool. {'command' : 'getMsgs', ‘params' : {'index' : l6l}}
5 (Teiy] il aviyoiiel Toay hofé 160 {'command': 'getMsgs', 'params': {'index': '6'}}
{'command': 'getMsgs', 'params': {'index': '6'}}
{'command': 'newMsg', 'params': {'msg': 'But we made it, which is cool.', 'user': 'Laura'}}
> [Terry] The internet is a wild place.. {'command': 'getMsgs', ‘'params': {'index': '6'}}
{'command': 'getMsgs', 'params': {'index': '0'}}
{'command': 'newMsg', 'params': {'msg': 'Hi everyone! Terry here too', 'user': 'Terry'}}
{'command': 'getMsgs', ‘'params': {'index': '7'}}
{'command': 'newMsg', 'params': {'msg': 'Hi Terry!', 'user': 'Laura'}}
{'command': 'getMsgs', 'params': {'index': '7'}}
{'command': 'getMsgs', 'params': {'index': '8'}}
{'command': 'newMsg', 'params': {'msg': 'The internet is a wild place...', ‘'user': 'Terry'}}
{'command': 'getMsgs', ‘'params': {'index': '9'}}
{'command': 'getMsgs', 'params': {'index': '9'}}

> [Chris] Wahoo00o :-)

> [Chris] This is like low-budget WhatsApp

> [Laura] Hi Terry!

=Notes W Comments IS 55 & - = + 10%

history = []

addMsg ‘/:>7

{
'msg'/ : Hello world,

'user' : 'C'

Chat Client

sce Chat Client

[Hello world '

=
Lo J
Sl
PRSI\
= o
AL
. =1 | = —

history = [
@ ‘[C] Hello World’
]
fq getMsgs
{
'"index' : O

}
see Chat Client

see Chat Client

history = [
@ '"[C] Hello world'
]

\&"/{C] Hello world"]'

ass Chat Client
> [C] Hello world

see Chat Client l

see Chat Client

[][Send J

el el

{'l

history

[V [C]

l::;ddMsg

{

'msgl
'user'

Hello World’]

'"Im here too'
'B'

> [C]

a Chat Client
Hello world

[Im here too

history = [
'"[C] Hello world',
'"[B] Im here too'
]

N~

— Chat Client
> [C] Hello world

X2 Chat Client

history = [
'"[C] Hello world',
'"[B] Im here too'
] :
getMsgs
{
'index'l : 1

} | = Chat Client
> [C] Hello world

X2 Chat Client

history = [
'"[C] Hello world',
'"[B] Im here too'
]

N~

'"["[B] Im here too"]'

—/

— Chat Client
[C] Hello world

[B] Im here too

X2 Chat Client

>
>

getMsgs 7
{

'index' : O
}

eae Chat Client

[][Send J

el el

history = [

' [C]
' [B]

Hello world',
Im here too!

— Chat Client
[C] Hello world

>
> [B] Im here too

history = [
'"[C] Hello world',

///”'] '"[B] Im here too'

'["[C] Hello world",
"[B] Im\bgre too"]"

— Chat Client
[C] Hello world

[B] Im here too

ese Chat Client >
> [C] Hello world S
>

[B] Im here too

[][Send J

W{/ .

Chat Server

addMsg
msg = text
user = user

Chat Server

getMsgs 1ndex = start index

Bajillion Extension

®0® @ seach x

C (Y O File| /Users/C] pringl.. Y% SUROP

Search (s Q

scientists confirm chinese horseshoe bats responsible sars

[
scientists confirm chinese bats responsible sars outbreak S e a r C h E n g l n e

sixth person dies sars like virus

new sars like virus shows person person transmission

issues alert sars type infection

fuel prices bigger problem sep 11 sars

sars expert dies

royal society inducts sars expert

sars probably originated bats

bats may source sars

Piech + Sahami, CS106A, Stanford University

Recap

The internet is just a bunch of connected computers

Each computer is either a server or a client
We can use classes in Python to make servers!

A server’s one job is to handle requests

Bonus

Internet sends data as strings...

How do you send a list or a dictionary?

Requests responses are
strings, often encoded
using JSON

JSON Crash Course

ages.json .

{

import json

"Chris":32,
"Gary":70,
"Mehran":50,
"Brahm":23,
"Rihanna":32,
"Adele" :32

JSON Crash Course

ddes. 1]S0I <

{

import json

load data

"Chris":32,

"Gary":70 data = json.load(open(‘ages.json’))
"Mehran":SO, # save data

"Brahm":23 json.dump (data, open(‘ages.json’))
"Rihanna":32,

"Adele":32

JSON Crash Course

ages.json .

{

import json

"Chris":32,

"Gary":70,

"Mehran":50,

"Brahm":23,

"Rihanna":32, # write a variable to a string
"aAdele": 32 data_str = json.dumps (data)

