
The Internet
Thanks to Mehran Sahami and Chris Piech for today’s slides!

Housekeeping
• Assignment #6 has been released!

• Remaining lecture schedule

– Friday: last content lecture!

– Tuesday: Life after 106A + AMA

– Wednesday: Final review

– Thursday: no lecture, OH during lecture time

• Acknowledging end-of-quarter stress
– Take care of yourselves and each other

– Be proud of what you have accomplished!

Today
• Review classes

– Very briefly

• Let’s talk about the internet!

– How the internet works at a high level

– Learn how we can use classes to implement a key part
of it (make a server!)

<review>

Dog.py

class Dog:
def init (self):

self.times_barked = 0

def bark():
print('woof')
self.times_barked += 1

life.py

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba. dict)
print(juno. dict)

Classes Review

Piech + Sahami, CS106A, Stanford University

def main():
simba = Dog()
juno = Dog()
simba.bark()
juno.bark()
simba.bark()

print(simba. dict)
print(juno. dict)

class Dog:
def init (self):

self.times_barked = 0
def bark():

print('woof')
self.times_barked += 1

Dog.py life.py

Classes Review

Piech + Sahami, CS106A, Stanford University

1. What happens when you make a new one?

class Dog:
def init (self):

self.times_barked = 0
def bark():

print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()
simba.bark()
juno.bark()
simba.bark()

print(simba. dict)
print(juno. dict)

Dog.py life.py

Classes Review

Piech + Sahami, CS106A, Stanford University

2. What variables does each instance store?

class Dog:
def init (self):

self.times_barked = 0
def bark():

print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()
simba.bark()
juno.bark()
simba.bark()
print(simba. dict)
print(juno. dict)

Dog.py life.py

Classes Review

Piech + Sahami, CS106A, Stanford University

2. What methods can you call on an instance?

def main():
simba = Dog()
juno = Dog()
simba.bark()
juno.bark()
simba.bark()

print(simba. dict)
print(juno. dict)

class Dog:
def init (self):

self.times_barked = 0
def bark():

print('woof')
self.times_barked += 1

Dog.py life.py

Classes Review

Piech + Sahami, CS106A, Stanford University

Did I mention that a class is like a fancy dictionary?

Terminal:
{ times_barked : 2 }
{ times_barked : 1 }

Classes define new variable

types

Piech + Sahami, CS106A, Stanford University

Classes decompose your

program across files

Piech + Sahami, CS106A, Stanford University

</ review>

One reason programming is
fun is because of the

internet...

Piech + Sahami, CS106A, Stanford University

Advanced Economies

Emerging Economies

Smartphone
Mobile
No phone

Smart Phone Access

Learning Goals
1. Write a program that can respond to internet requests

How does your phone
communicate with Facebook?

The program on your phone
talks to the program at

Facebook

Facebook Server

Kotlin is the
language of
Android
phones

Swift is the
language of
Apple
phones

JavaScript
with HTML
are the
languages
of websites

Facebook Server
Is this

authenticated login?

sahami@cs.stanford.edu
is now logged in

sahami@cs.stanford.edu

mailto:sahami@cs.stanford.edu
mailto:sahami@cs.stanford.edu

Facebook Server
Send me the full name for
sahami@cs.stanford.edu

“Mehran Sahami”
Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook Server
Send me the cover photo for

sahami@cs.stanford.edu

Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook Server
Send the profile photo for
sahami@cs.stanford.edu

Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook Server

Status: Mehran is teaching

Set status:

Send the status for
sahami@cs.stanford.edu

“teaching”Mehran Sahami

mailto:sahami@cs.stanford.edu

Facebook ServerSet the status for
sahami@cs.stanford.edu

to be “eating”

“success”

Set status: eating

Mehran Sahami

Status: Mehran is teaching

mailto:sahami@cs.stanford.edu

Facebook Server
Send me the status for
sahami@cs.stanford.edu

“eating”Mehran Sahami

Status: Mehran is eating

mailto:sahami@cs.stanford.edu

The internet is just many programs sending messages (as Strings)

Background: The Internet

Facebook
datacenter

Background: The Internet

Your computer
(facebook.com)

The internet is just many programs sending messages (as Strings)

Facebook
datacenter

“Server” “Client”

Background: The Internet

Your computer
(facebook.com)

The internet is just many programs sending messages (as Strings)

Facebook
datacenter

“Server” “Client”

Get status for “Ecy King”

Background: The Internet

Your computer
(facebook.com)

The internet is just many programs sending messages (as Strings)

“request”

Facebook
datacenter

Your computer
(facebook.com)

“Server” “Client”

“Being super TA”

“response”

Background: The Internet

The internet is just many programs sending messages (as Strings)

Facebook
datacenter

Your computer
(facebook.com)

“Server” “Client”

“Being super TA”

Get status for “Ecy King”

“response”

Background: The Internet

The internet is just many programs sending messages (as Strings)

“request”

There are (generally) two
types of internet programs:

Servers and Clients

Internet 101

Computers on the internet

Facebook Server

=

Servers are computers (running code)

I am here

Facebook’s closest
datacenter is here

Facebook Server

The Internet

Facebook Server

The Internet

Facebook Server

The Internet

Facebook Server

The Internet

Facebook Server

The Internet

eating

Facebook Server

The Internet

teaching

Facebook Server

The Internet

Many computers can connect
to the same server

“Client”

Facebook
datacenter

“Server”

The Internet

Mehran’s phone
(facebook app)

Your mom’s
computer

(linux shell)

“Client”

Your computer
(facebook.com)

“Client”

Most of the Internet

Server / Clients

Aka “the brains”

Today, the server

A server’s main job is to

respond to requests

Server

Request
From a client

Response
To the client

A Server’s Simple Purpose

Request
someRequest

String
serverResponse

A Server’s Simple Purpose

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request): #
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request):
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request):
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer() # has handleRequest method
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request):
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)
enjoy

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request):
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)
enjoy

What is a Port?

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request):
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)
enjoy

What is a Request?

/* Request has a command */
command (type is string)

/* Request has parameters */
params (type is dict)

// methods that the server calls on requests
request.command
request.params

Servers on one slide
handle server requests (must be in a
class)

def handle_request(self, request):
return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

class Request:
"""
Request class packages the key information from an internet request.
"""
def __init__(self, request_command, request_params):

Every request has a command (string)
self.command = request_command
Every request has params (dictionary). Can be empty: {}.
self.params = request_params

def get_params(self):
A 'getter' method to get the params return self.params

def get_command(self):
A 'getter' method to get the command return self.command

def __str__(self):
A special method which allows you to 'print' a request as a string.
return str(self. dict)

First Server Example!
import SimpleServer

We define a class to handle server requests class
class MyFirstServer:

def __init__(self):
pass

This is the server request callback function.
def handle_request(self, request):

print(request)
return 'Happy Thursday, wonderful cs106a!!!'

def main():
Make the server handler
handler = MyFirstServer()
Start the server to handle internet requests at specified port

 SimpleServer.run_server(handler, 8000)

Who makes requests?

Who makes requests?

Other programs can send requests!

Web browsers can send requests!

Anatomy of a Browser Request

Anatomy of a Browser Request

Piech + Sahami, CS106A, Stanford University

The protocol.
Usually http or https

Anatomy of a Browser Request

Piech + Sahami, CS106A, Stanford University

The webaddress
of the computer
that will respond

to the request

Anatomy of a Browser Request

Piech + Sahami, CS106A, Stanford University

The request command

Anatomy of a Browser Request

Piech + Sahami, CS106A, Stanford University

The request params

Hit Counter

Recall Requests

/* Request has a command */
command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.command
request.params

Requests are like Remote Method Calls

ServerServer has a bunch of discrete

things it can do

make_toast blend

Requests are like Remote Method Calls

ServerServer has a bunch of discrete

things it can do

get_status add_user

Requests are like Remote Method Calls

Server

get_status add_user

Requests are like Remote Method Calls
request.get_command()
=> ”get_status”

Server

get_status add_user

Requests are like Remote Method Calls

To make toast, I need a
parameter

get_status

Requests are like Remote Method Calls

get_status

I was given a parameter!
request.params[“userName”]

Requests are like Remote Method Calls

get_status

sahami

Requests are like Remote Method Calls

teaching

def handle_request(self, request):
cmd = request.command
if cmd == 'get_status':

user = request.params['userName']
status = self.get_status(user)

 return status

 if cmd == 'add_user':
user = request.params['userName']
status = self.add_user(user)

Time for a little chat

Chat Server and Client

Piech + Sahami, CS106A, Stanford University

history = []

Send

Chat Client

Send

Chat Client

Hello world

addMsg
{

'msg' : Hello world,
'user' : 'C'

}

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client

getMsgs
{

'index' : 0
}

Piech + Sahami, CS106A, Stanford University

history = [
‘[C] Hello World’

]

history = [
'[C] Hello world'

]

Send

Chat Client

Send

Chat Client

'["[C] Hello world"]'

> [C] Hello world

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client > [C] Hello world

Im here too

addMsg
{

'msg' : 'Im here too'
'user' : 'B'

}

Piech + Sahami, CS106A, Stanford University

history = [‘[C] Hello World’]

history = [
'[C] Hello world',
'[B] Im here too'

]

Send

Chat Client

Send

Chat Client > [C] Hello world

'Got it'

Piech + Sahami, CS106A, Stanford University

history = [
'[C] Hello world',
'[B] Im here too'

]

Send

Chat Client

Send

Chat Client > [C] Hello world

getMsgs
{

'index' : 1
}

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client > [C] Hello world

> [B] Im here too

'["[B] Im here too"]'

Piech + Sahami, CS106A, Stanford University

history = [
'[C] Hello world',
'[B] Im here too'

]

Send

Chat Client

Send

Chat Client > [C] Hello world

> [B] Im here too

history = [
'[C] Hello world',
'[B] Im here too'

]

getMsgs
{

'index' : 0
}

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client > [C] Hello world

> [B] Im here too> [C] Hello world
> [B] Im here too

history = [
'[C] Hello world',
'[B] Im here too']

'["[C] Hello world",
"[B] Im here too"]'

Piech + Sahami, CS106A, Stanford University

Chat Server
addMsg

msg = text
user = user

getMsgs index = start_index

Chat Server

Piech + Sahami, CS106A, Stanford University

Search Engine

Bajillion Extension

Piech + Sahami, CS106A, Stanford University

Recap
• The internet is just a bunch of connected computers

• Each computer is either a server or a client

• We can use classes in Python to make servers!

• A server’s one job is to handle requests

Bonus

Internet sends data as strings…

How do you send a list or a dictionary?

Requests responses are
strings, often encoded

using JSON

Piech + Sahami, CS106A, Stanford University

JSON Crash Course

ages.json

{
"Chris":32,
"Gary":70,
"Mehran":50,
"Brahm":23,
"Rihanna":32,
"Adele":32

}

Piech + Sahami, CS106A, Stanford University

import json

load data
data = json.load(open(‘ages.json’))
save data
json.dump(data, open(‘ages.json’))

JSON Crash Course

ages.json

{
"Chris":32,
"Gary":70,
"Mehran":50,
"Brahm":23,
"Rihanna":32,
"Adele":32

}

Piech + Sahami, CS106A, Stanford University

import json

load data
data = json.load(open(‘ages.json’))
save data
json.dump(data, open(‘ages.json’))

JSON Crash Course

ages.json

{
"Chris":32,
"Gary":70,
"Mehran":50,
"Brahm":23,
"Rihanna":32,
"Adele":32

}

Piech + Sahami, CS106A, Stanford University

import json

load data
data = json.load(open(‘ages.json’))
save data
json.dump(data, open(‘ages.json’))
write a variable to a string
data_str = json.dumps(data)

