

Housekeeping ¢ \/i

Assignment 6, Bajillion is due Tues, Aug 15th at 11:59 pm

o with Grace Period until Wednesday, Aug 16th at 11:59 pm
No section next week
Final a week from now, next week Friday, Aug 18th in here
YOU'RE AT THE LAST ASSIGNMENT; LOOK AT HOW FAR

YOU'VE COME :)!

e Tuples
o Exploring a new iterable type

e Lambdas, Maps, and Sorting
o Exploring cool stuff with iterables

e Some Shortcuts
o List Comprehensions
o |f-else statements and the Ternary Operator

e Making Our Own Projects
o How can we use a template to explore programming?
o How do we create our own start-to-finish projectin
PyCharm?

Tuples: a New Type

Overview of Tuple Functionality

e Declaring a tuple

o Tuples are declared as a bundle of parentheses.
*my tup = ('Fresno', 93720, '"CA')

e Accessing Values

o We can access and store tuple values with zero-indexing.
* city value = my tup[0]

e Updating Values
o Tuples are immutable! We can't update nor modify the
values directly.

e Operations
o len(my tup) # evaluates to 3
omy tup[2] # can index into

Tuples

Groups a few items together
Known number of elements
Elements may be different types
Examples

o Ordered pairs:
= (3,4,5)

o Name & SunetID number
= ('ecyfemi', 0314159)

o RGB values
= (255, 0, 255)

Lists

Many elements; may append
Unknown number of elements
Typically same type
Examples
o Store urls
= ['www.stanford.com’,
'tinyurl.com’]
o Average temperatures
= [96.7,99, 98.2]

An Example

Tuples are declared as a bundle of parentheses.

Some characteristics are...
e fixed size
e typically small
e sometimes different types inside

show rating = ('Miraculous Ladybug', 4.5)

show = show rating[O]

rating = show rating[1l]

len (show rating) # would be 2
len(show rating[0]) # would be 18

rating—+=—0-1%

Looping

We can also loop through the items in a tuple.

show rating = ('Miraculous Ladybug', 4.5)

for item in show rating:
print (item)

mwiimn

prints
Miraculous Ladybug
4.5

mwiimn

Lists of Tuples

Often, we'll have to deal with lists of tuples.

show ratings = [('Miraculous Ladybug', 4.5),
('Supa Team 4', 4.9),

('Naruto Shippuden',
4.7)]

prints ('Naruto Shippuden', 4.7)

print (show ratings([2])
prints 4.7
print (show ratings[2][1])

Lists of Tuples

We can loop through the list.

show ratings = [('Miraculous Ladybug', 4.5),
('Supa Team 4', 4.9), ('Naruto Shippuden',
4.7)]

for show rating in show ratings:

print (show rating[0], show rating[1])

Lists of Tuples

A little secret! The function d.items() returns a list of tuples!

city pops = {'Fresno': 500,000, 'Palo Alto',
67, 000, 'LA': 3,849,000}

for city pop in city pops.items():
print(city pop[0], city pop[l])

mwimn

prints
Fresno 500000
Palo Alto 67000
LA 3849000

mwiiw

city pops.items() is

[('Fresno', 500,000),
('Palo Alto', 67,000),
('LA', 3,849,000)]

Returning Multiple Values

We can also use tuples to return multiple values :)

def get origin|()
return 0,0
def calculate distance():

X,y = get origin()

print(x, y) # will print 0, O

Overview of Tuple Functionality

e Declaring a tuple
omy tup = ('Fresno', 93720, 'CA')

e Accessing Values
o city value = my tup[0]
o for item in my tup:
o print (item)

© my—tupfét—=—-cIovis’

e Operations
o len(my tup) # evaluates to 3

omy tup[2] # can i1ndex into

e Dealing with Multiple Values
°x, y = (4, 3)
o return x, y

J

The Lambdas, Maps,
and Sorting!

The Iterables

Lists
my list = []
my list.append(3)

for item in my list:
print (item)

Dictionaries
my dict = {}
my dict['key'] = 'value'

for key in my dict:
print (key, dictlkey])

Strings
my string = ""
my string += "c"

for char in my string:
print (char)

Tuples
my tup = ()
my tup = (3, 4, 5)

for elem in my tup:
print (elem)

The Map Function

The map function takes in a function and an iterable.
This function gets applied to each ELEMENT of the iterable.

def double num(num) :
return num*2
nums = [1, 2, 3]
new list = map(double num, nums)

The Map Function

The map function takes in a function and an iterable.
This function gets applied to each ELEMENT of the iterable.

def double num(num) :
return num*2
nums = [1, 2, 3]
new list = map(double num, nums)
The map returns j
a strange object
though, so we

actually need to
castit as a list!

The Map Function

The map function takes in a function and an iterable.
This function gets applied to each ELEMENT of the iterable.

def double num(num) :
return num*2
nums = [1, 2, 3]
new list = list (map(double num, nums))
The map returns j
a strange object
though, so we

actually need to
castit as a list!

The Map Function

The map function takes in a function and an iterable.
This function gets applied to each ELEMENT of the iterable.

def double num(num) :
return num*2
nums = [1, 2, 3]
new list = list (map(double num, nums))
prints [2, 4, 6]
print (new list)

Map vs Another Function

def double num(num) :
return num*2

def double list (nums)::
result []
for num in nums:
result.append(double num(num))
return result

def double list w map (nums) :
result = list (map(double num, nums))
return result

A lambda is a single line of code that embodies the task of
a function.

double n = lambda n: n * 2
print (double n(4)) # prints 8

For the map function, instead of putting in a function, we
can put in a lambda for each element.

list (map (double n, my list)
list (map(lambda n: n*2, my list))

Lambda Breakdown

A lambda is a single line of code that embodies the task of
a function.

double n = lambda n: n * 2

e nisthevariable name
e theright defines what we are doing to the
variable

What other cool things can we do with

iterables?

Min/Max Sum

Sometimes we want to get the Bonus: gets the sum of all the
minimum value of a list/tuple. elements in a list/tuple!

my list = [3, 1, 4, 1] sum(my list) # is 9

my_ tuple = (5, 9, 2, 6) sum (my tuple)# is 22

min(my_ list) # is 1 # gets the average!

min (my_ tuple) # 1s 2 sum(my list)/len(my list)
Othertimes, we want the max. B B

max (my list) # is 4

max (my tuple) # is 9

Sorted

Sorted generates a NEW list with the elements in ascending order.
result = sorted(my list)

print(result) # prints [1, 1, 3, 4]

Min/Max Sum

Sometimes we want to get the Bonus: gets the sum of all the
minimum value of a list/tuple. elements in a list/tuple!

my list = [3, 1, 4, 1] sum(my list) # is O

my_ tuple = (5, 9, 2, 6) sum (my tuple)# is 22

min(my_ list) # is 1 # gets the average!

min (my_ tuple) # 1s 2 sum(my list)/len(my list)
Othertimes, we want the max. B B

max (my list) # is 4

max (my tuple) # is 9

Sorted

Sorted generates a NEW list with the elements in ascending order.
result = sorted(my list)

print(result) # prints [1, 1, 3, 4]

We can REVERSE the list so that the elements are in descending order.
result2 = sorted(my list, reverse=True)

print (result2) # is [4, 3, 1, 1]

What if we want to sort our own way?

key = criteria to compare elements; lower elements sorted first

Examples:
e Sortlistin abc order?

e Sort list of strings by length?

e Sort list of numbers by absolute value

key = criteria to compare elements; lower elements sorted first

Examples:
e Sortlistin abcorder?
o words = ['bacon', 'apple', 'cabbage']
o result = sorted(words) # yay!
e Sort list of strings by length?

e Sort list of numbers by absolute value

key = criteria to compare elements; lower elements sorted first

Examples:
e Sortlistin abcorder?
o words = ['banana', 'apple', 'clementine']

o result = sorted(words) # vyay!

e Sort list of strings by length?
o result = sorted(words, key=lambda w: len (w))

o # result is ['apple', 'banana', 'clementine']
o Sort list of numbers by absolute value?

key = criteria to compare elements; lower elements sorted first

Examples:
e Sortlistin abcorder?
o words = ['banana', 'apple', 'clementine']
o result = sorted(words) # yay!
e Sort list of strings by length?
o result = sorted(words, key=lambda w: len (w))
o # result is ['apple', 'banana', 'clementine']
e Sort list of numbers by absolute value?
onums = [3, 1, 4, -1, -5,-9]
o result = sorted(nums, key= lambda num:
abs (num))
o # result is [1, -1, 3, 4, -5, -9]

More Examples of Keys + Reverse

key = criteria to compare elements; lower elements sorted first

Examples:
e Sortlistinreverse abc order?
o words = ['banana', 'apple', 'clementine']
o result = sorted(words, reverse=True) # vay!
e Sort list of strings by longest length?
o words = ['banana', 'apple', 'clementine']
o result = sorted(words, key=lambda w: len (w),
reverse=True)
result is ['clementine', 'banana', 'apple']

Some Shortcuts

S'more Shortcuts

List Comprehensions Condensing Ifs
e creating a new list based Ternary Operator
on an old one e how can we do certain if-
else statements on one
line?

What if we want to make a list/perform an

action based on an original list?

List Comprehensions

What if we want to make a list based on other list?

old list [3, 1, 4, 1, 5, 9]
new list [elem*2 for elem in old list]

List Comprehensions

What if we want to make a list based on other list?

old list [3, 1, 4, 1, 5, 9]
new list [elem*2 for elem in old list]

same as
new list = []
for elem in old list:
new list.append(elem*2)

List Comprehensions

What if we want to make a list based on other list?

old list [3, 1, 4, 1, 5, 9]
new list [elem*2 for elem in old list]

same as
new list = []
for elem in old list:
new list.append(elem*2)

new list is [6, 2, 8, 2, 10, 18]

List Comprehensions

tfiltering!

old list 5, 9]
new list
[elem*2 for elem in old list if elem $ 2 == 0]

List Comprehensions

tfiltering!

old list = 5, 9]
new list =
[elem*2 for elem in old list if elem $ 2 == 0]

#same as
new list = []

for elem in old 1list:

if elem % 2 ==

new list.append(elem*2)

List Comprehensions

tfiltering!

old list = 5, 9]
new list =
[elem*2 for elem in old list if elem $ 2 == 0]

#same as

new list = []

for elem in old 1list:
if elem % 2 ==

new list.append(elem*2)

new list is [8]

doubles (and keeps) element only if condition

List Comprehensions

How do we do quick actions?

old list = [3, 1, 4, 1, 5, 9]
[print (elem) for elem in old list]

#same as

for elem in old list:

print (elem)

What if want to do quick if else?

Quick If-Return

moves around if-else to be a one-liner

Before After

def is legal (age): def is legal (age):
if age >= 18: return age >= 18
return True
else:
return False

Ternary Op

[action on true] if [expression] else [action on false]

can do actions!
print('18+') if is legal (x) else print('not yet')

can store variables!

pixel.red =
out pixel.red if pixel.blue > 0.9*avg

else pixel.red

*note that this can make code a lot more
dense and should be used sparingly!

J

Writing Our Own
Programs

How do we experiment with the code in our

own ways?

Modify

Can take an
assignment and mod
it, basically doing an

extension.

1) Copy a previous
assignment

2) Add/Change stuff
that suit your needs
3) Experiment &
Enjoy!

Cool modifications in
a limited space

Template

Can take an
assignment, delete
code, and do
whatchya want

1) Copy a previous
assignment
2) Delete stuff
3) Create the
program you want

More
experimentation and
modification

Scratch

Do whatever we
want, ground up

1) Open blank project
or start from scratch
2) Create main
boilerplate
3) Install necessary
packages
3) Explore

Go wild at your own
risk ;) LOTS of
learning here!

Ideas to Explore

Ideas to Explore

Ideas to Explore

Programming learned by exploring!

PyCharm is your Oyster!

PyCharm is your Oyster!
Blank Project on CS106A page!

Tuples and Iteratables Independent Projects
how to create and e modifying existing
manage tuples assignments (aka
dealing with the iterables creating your own
how to map and sort extensions)
iterables e using assignments as
how to use lambdas templates
using list e starting from scratch
comprehensions o absolute scratch
using the ternary o opening a blank
operator and shortening project
if-else statements e input function

