
​CS106A​ ​Summer 2025​

​Practice Midterm​

​__________________________​
​Print name (​​legibly​​)​

​__________________________​
​Your SUID (e.g. 006892056)​

​Exam instructions:​​There are 5 questions. Write all answers directly on the exam. This printed exam is​
​closed-book and closed-device​​; you may refer only to your one letter-sized page of prepared notes and​
​the provided reference sheet.​
​Python coding guidelines:​​Unless otherwise restricted in the instructions​​for a specific problem, you are​
​free to use any of the libraries, functions, and data types we have learned in class. You don't need​
​import​​statements in your solutions, just assume the required header files are available to you. You are​
​free to create helper functions unless the problem states otherwise. Comments are not required, but when​
​your code is incorrect, comments could clarify your intentions and help earn partial credit.​

​THE STANFORD UNIVERSITY HONOR CODE​
​A. The Honor Code is an undertaking of the students, individually and collectively:​

​(1) that they will not give or receive aid in examinations; that they will not give or receive​
​unpermitted aid in class work, in the preparation of reports, or in any other work that is to be used​
​by the instructor as the basis of grading;​
​(2) that they will do their share and take an active part in seeing to it that others as well as​
​themselves uphold the spirit and letter of the Honor Code.​

​B. The faculty on its part manifests its confidence in the honor of its students by refraining from​
​proctoring examinations and from taking unusual and unreasonable precautions to prevent the forms of​
​dishonesty mentioned above. The faculty will also avoid as far as practicable, academic procedures that​
​create temptations to violate the Honor Code.​
​C. While the faculty alone has the right and obligation to set academic requirements, the students and​
​faculty will work together to establish optimal conditions for honorable academic work. I acknowledge​
​and accept the Honor Code.​

​___(signature)​
​I accept and acknowledge the honor code.​

​Border Karel​ ​15​

​Largest and Second Largest​ ​16​

​Collapse List​ ​12​

​Longest Consonants​ ​12​

​Make True Grid​ ​18​

​73​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Problem 1: Border Karel (15 points)​

​We want to write a Karel program which will create an inside border around the world. Each location that​
​is part of the border should have one (and only one) beeper on it and the border should be inset by one​
​square from the outer walls of the world like this:​

​In solving this problem, you can count on the following facts about the world:​

​●​ ​You may assume that the world is at least 3x3 squares. The correct solution for a 3x3 square​
​world is to place a single beeper in the center square.​

​●​ ​Karel starts off facing East at the corner of 1st Street and 1st Avenue with an infinite number of​
​beepers in its beeper bag.​

​●​ ​We do not care about Karel's final location or orientation.​
​●​ ​You are limited to the instructions in the Karel course reader. Notably, you cannot use variables​

​except as the index variable in for loops (such as the variable​​i​​) and you cannot refer to that​
​variable otherwise.​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Please write your solution for Problem 1 here.​

​from karel.stanfordkarel import *​

​def main():​

​if __name__ == “__main__”:​

​run_karel_program()​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Use this page as additional space for Problem 1, if needed.​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Problem 2: Largest and Second Largest (16 points)​

​For this problem, write a program that asks the user to enter integers until they enter a 0 as a sentinel to​
​indicate the end of the input list. Your program should then print out the largest and second-largest values​
​from values the user entered. A sample run of the program might look like this (user input is the numbers​
​after "Enter value:"):​

​Enter value: 7​
​Enter value: 42​
​Enter value: 18​
​Enter value: 9​
​Enter value: 35​
​Enter value: 0​
​The largest value is 42​
​The second largest is 35​

​To reduce the number of special cases, you may make the following assumptions:​

​●​ ​The user must enter at least two values before the sentinel.​
​●​ ​All values inputted by the user are positive integers.​
​●​ ​If the largest value appears more than once, that value should be listed as both the largest and​

​second-largest value, as shown in the following sample run:​

​Enter value: 1​
​Enter value: 8​
​Enter value: 6​
​Enter value: 8​
​Enter value: 0​
​The largest value is 8​
​The second largest is 8​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Please write your solution for Problem 2 here.​

​SENTINEL = 0 # the sentinel used to signal the end of the input​

​if __name__ == “__main__”:​

​main()​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Use this page as additional space for Problem 2, if needed.​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Problem 3: Collapse List (12 points)​

​Write​​a​​function​​collapse​​that​​accepts​​a​​list​​of​​integers​​as​​a​​parameter​​and​​returns​​a​​new​​list​​containing​
​the​​result​​of​​replacing​​each​​pair​​of​​integers​​with​​the​​sum​​of​​that​​pair.​​If​​the​​list​​stores​​an​​odd​​number​​of​
​elements, the final element is not collapsed. You must not edit the input list.​

​Here are some sample calls to​​collapse​​, shown as doctests.​

​>>> collapse([7, 2, 8, 9, 4, 13, 7, 1, 9, 10])​
​[9, 17, 17, 8, 19]​
​>>> collapse([1, 2, 3, 4, 5])​
​[3, 7, 5]​

​Please write your solution to Problem 3 here:​

​def collapse(lst):​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Use this page as additional space for Problem 3, if needed.​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Problem 4: Longest Consonants (12 points)​

​Write​​a​​function​​longest_consonants​​that​​takes​​in​​a​​string​​s​​as​​a​​parameter​​and​​returns​​the​​longest​
​number​​of​​consonants​​that​​appear​​in​​a​​row​​within​​that​​string.​​We'll​​consider​​consonants​​to​​be​​letters​​that​
​are​ ​not​ ​A,​ ​E,​ ​I,​ ​O,​ ​or​ ​U.​​If​​s​​does​​not​​contain​​any​​consonants,​​you​​should​​return​​0.​​There​​may​​also​​be​
​non-alphabetic characters in​​s​​, which do not count as consonants.​

​Notes:​

​●​ ​To check if a character is a vowel, you can check if that character is in the string​​“AEIOU”​​.​
​●​ ​You may assume that the string​​s​​is all lowercase.​

​Here are a few sample calls to​​longest_consonants​​, shown as doctests.​

​>>> longest_consonants('rhythm')​
​6​
​>>> longest_consonants('what is the longest consonant here')​
​2​
​>>> longest_consonants('aaaaaa')​
​0​

​Please write your solution to Problem 4 here:​

​def longest_consonants(s):​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Use this page as additional space for Problem 4, if needed.​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Problem 5: Make True Grid (18 points)​

​When working with 2-dimensional lists in Python, it can often be easier to work with a "true" grid where​
​every row in the 2-dimensional list has the same number of elements, as opposed to a "jagged" grid where​
​each row may have a different number of elements.​

​Your job is to write a function called​​make_true_grid(grid, row_size, filler)​​that is​
​passed a 2-dimensional list of integers (​​grid​​), the minimum row size for each row of the grid after the​
​grid is made "true" (​​row_size​​), and an integer "filler" value (​​filler​​) that will be used to pad rows in​
​the original grid to make them all the same size.​

​Your function should modify the grid passed in so that every row has the​​same number​​of elements. If​
​the original grid passed in has any rows larger than​​row_size​​, then each row in the grid after your​
​function is done should be the size of the longest row (row with the most elements) in the original grid​
​passed in (i.e., you should guarantee that all the elements in the original grid show up in the final grid). If​
​the length of all the rows in the original grid are less than or equal to​​row_size​​, then each row in the​
​grid after your function is done should have the length​​row_size​​.​

​In order to make the length of each row in the grid the same size, you should add the​​filler​​value to​
​the ends of those rows, as needed, to make them all the same size. There should be no extra rows added to​
​the grid.​

​Here are some examples of calls to​​make_true_grid​​, and what the initial grid and resulting grid (after​
​the function is called), should look like:​

​grid = [[2, 3], [5], [1, 2, 3, 4, 5]]​
​# After calling make_true_grid(grid, 3, 0), the grid should be:​
​[[2, 3, 0, 0, 0], [5, 0, 0, 0, 0], [1, 2, 3, 4, 5]]​

​grid = [[10, 20], [], [1]]​
​# After calling make_true_grid(grid, 4, 9), the grid should be:​
​[[10, 20, 9, 9], [9, 9, 9, 9], [1, 9, 9, 9]]​

​grid = [[1, 2], [3, 4], [5, 6]]​
​# After calling make_true_grid(grid, 1, 0), the grid should be:​
​[[1, 2], [3, 4], [5, 6]]​

​As a side note (although it will not explicitly impact your code), if an already true grid (all the rows are​
​the same length and the the length is greater than or equal to​​row_size​​) is passed to your function, that​
​grid should not be changed by your function (as shown in the last example above).​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Please write your solution to Problem 5 here.​

​def make_true_grid(grid, row_size, filler):​

​___________________________________ (Your SUID, e.g. 006892456, required on every page)​

​Use this page as additional space for Problem 5, if needed.​

