Problem 1: Short Answer (20 points)
Put your answers into the boxes provided. We will not accept work that is outside the boxes.

A. Write the output for the following code:
grid (ry, 2, 31, (4, 5, 61, [7, 8, 9]]

print(grid[2];
print (grid[1]1[1])

7, 8, 9
E[> 8, 9] (5 points)
B. Write the output for the following code:
def f(s):
return s.lower ()
tup = ("Cat", "dog", "Bird", "FISH", "hamster")

result = sorted(tup, key=f)
print (result)

['Bird', 'Cat', 'dog', 'FISH', 'hamster']
(5 points)

C. Write the output for the following code:

data = {
"students": [
("Alice"™, [85, 95]),
("Bob", [78, 88]),
("Charlie", [90, 95])
1,
"course": "CS106A"

}

x = data["students"][1][0]
y data["course"]
z (data["students"][0][1]1[0] + data["students"]1[0]1[1]1[1]) / 2

print (x)
print (y)
print (z)

Bob
CsS106A
90.0 (5 points)

Page 2 of 14

D. Write the output for the following code:

S

= "poets describe dreams with words"

1st = []

w

— nn

for ch in s:

if ch == " ":
lst.insert (0, w)
W = mn

else:
w += ch

lst.insert (0, w)

s2 = mn
for element in lst:

s2 += element + " "

print (s2)

words with dreams describe poets

(5 points)

Page 3 of 14

Problem 2: Lists of Lists (20 points)

2A. Implement a function named str and length(lst) that takes a list of strings as its argument and
returns a list of two-item lists. Each sublist should contain a string from the original list as its first element
and the length of that string as its second element. (10 points)

Example 1:
lst = ["a"’ "bcl" "def"’ "ghij "]
new lst = str and length(lst)

print (new lst)

output:
(t'a', 11, ['be', 2], ['def', 3], ['ghij', 4]]

Example 2:
1st = ['xyz', "', 'x', 'wxyz']
new lst = str and length(lst)

print (new lst)

output:
(['xyz', 31, ("', O], ['x"', 11, ['wxyz', 4]]

Example 3:

l1st = []

new lst = str and length(lst)
print (new 1lst)

output:

[]

Your code:

def str_and length(lst):
new_1lst = []
for str in 1st:
new_lst.append([str, len(str)])
return new_lst

Page 4 of 14

2B: Use your str_and length () function from part 2A in a new function, count map () that returns a
dictionary where the keys are the lengths, and the values are lists of all the strings that have that length.
For example:

1st = ["a", "be", "de", "f"]
new_lst = str_and length(lst)
new_lst contains [['a', 1], ['be', 2], ['de', 2], ['f', 1]1]
count map (new_1lst) # returns {1: ['a', 'f'], 2: ['be', 'de'l}

def count map (lst):

win

1lst will be in the form: [[strl, lenl], [str2, len2],...]
count_dict = {}
for str_and len in 1st:

val = str_and len[0]

key = str_and len[1]

if key not in count dict:

count_dict[key] = []

count_dict[key] .append(val)

return count dict

Page 5 of 14

Problem 3: Strings (20 points)

LOL-speak is a stylized form of English that has playful translations for certain words, and was popular in
the early 2000s on internet forums. Here are some example translations:

hello, how are you today? oh hai, how iz u todayz?
my cat is very fluffy. mabh kitteh iz sooo floofy.
do you have any shacks? do u haz any snackz?

Write a function, 1ol speakify (s) that takes a string parameter and uses a dictionary of words to their
LOL-speak translations to convert the string to lol-chat. The string will have words separated by spaces,
but the words can have punctuation on the end. You should keep punctuation in your final translations.
You can assume you have the following function that removes punctuation and whitespace from a string:

def remove punct(s) :
removes all punctuation and spaces from a string
result = "'
for ch in s:
if ch.isalnum(): # alphanumeric
result += ch
return result

For example:

>>> remove punct ('Hello!’)

'Hello'

>>> remove punct ('...cheeseburger...")
'cheeseburger’

You can also use the Python function s. replace (s1, s2), which replaces all instances of s1 with s2
in a string, s. For example:

>>> s = "hello!!!l!"

>>> new s = s.replace('hello', 'hi'")
>>> new s

Thitirne

Rules for your function:
1. You may not loop through the dictionary. Instead, you must process the string itself (you may
want to use the string’s split () function
2. You can assume that the string parameter will be lowercase.
3. You may have an extra space on the end of the string you return.

Examples:

>>> 1ol speakify("hello! can i please have your cheesburger? my tummy wants
food! thanks!™)

'oh hai! can 1 plz haz ur cheesburger? mah tummy wants nomz! fank yoo! '
>>> 1ol speakify("hello, how are you today?")

'oh hai, how r u today? '

>>> 1ol speakify("my cat is fluffy. your cat is fluffy too.")

'mah kitteh is floofy. ur kitteh is floofy too. '

>>>

put ur code on the next page. fank you!

Page 6 of 14

def lol speakify(s):
lol dict = {

"hello": "oh hai™,
"yes": "ya",

"nO": "nu",
"please": "plz",
"thanks": "fank yoo",
"your": "ur",
"you": "u",

"are": "r",

"have": "haz",
"my" : "mah" ,
"food": "nomz",
"cat"™ : "kitteh",
"fluffy": "floofy"

}
your code here!

result = ''
words = s.split()
for word in words:
stripped = remove_ punct (word)
if stripped in lol_dict:
result += word.replace(stripped, lol_dict[stripped]) + ' '
else:
result += word + ' '
return result

Page 7 of 14

Problem 4: File Processing and Nested Structures (20 points)

For assignment five, you wrote an Adventure game. The original text-based adventure games were often
presented in a labyrinth of rooms with the ability to walk from room to room in the labyrinth. The rooms
could contain objects to pick up, or monsters to fight. We can model a labyrinth as a grid, where each
room in the grid can hold items or monsters. Here is an example 3 row x 2 column labyrinth:

items: sword, potion items: map
monsters: orc monsters: none
items: medicine items: none
monsters: none monsters: none
items: fireball, items: none
shield monsters: troll
monsters: snake, bunny

You are given a file that describes a labyrinth as follows:

e the first line of the file is the number of rows in grid

e the second line of the file is the number of columns in the grid

¢ the remaining lines represent the items and monsters for each grid location, row-by-row and column by
column. First there will be a line of items for a grid location, then the next line will contain the monsters for
that location. If there are multiple items or monsters in a location, they will be space separated.

e If there are no items or monsters in a location, the line will be blank

Here is the file for the grid above:

3 - First line: Number of rows
2 - Second line: Number of columns
sword potion - grid[0] [0] items
orc - grid[0] [0] monsters
map - grid[0] [1] items

- grid[0] [1] monsters
medicine - grid[1][0] items

- grid[1] [0] monsters

- grid[1][1] items

- grid[1][1] monsters
fireball shield - grid[2] [0] items
snake bunny - grid[2] [0] monsters

P grid[2][1] items
troll - grid[2] [1] monsters

For this problem, write the function read labryinth from file (filename) that creates and
returns a list of lists for the grid, with each grid location containing a dictionary with the keys “items” and
“‘monsters” and lists of the items and monsters for each location.

Notes:
e You need to use the row count and column count to read the rest of the file

e You should populate your lists and dictionaries as you read the remaining data

The next page shows the nested list created from the file above.

Page 8 of 14

The nested list created from the file on the previous page, which contains one sublist per row all
contained in one overall list:

{'items': ['sword', 'potion'], 'monsters': ['orc']},
{'items': ['map'], 'monsters': []}
1,
[
{'items': ['medicine'], 'monsters': []},
{'items': [], 'monsters': []}
1,
[
{'items': ['fireball', 'shield'], 'monsters': ['snake', 'bunny']},
{'items': [], 'monsters': ['troll']}
]
]
Your code:

def read labryinth from file(filename) :
labryinth = []
with open(filename, 'r') as f:
num_rows = int(f.readline())
num _cols = int(f.readline())
for row in range (num_rows) :
new_row = []
for col in range (num_cols):
items = f.readline () .split()
monsters = f.readline () .split()
new_row.append({'items': items, 'monsters': monsters})
labryinth.append (new_row)
return labryinth

Page 9 of 14

Problem 5: Sorting (20 points)

For this problem, you will be given a list of historical speeches as a list of tuples, in the form of
(speaker, speech title, year delivered, number of words in the speech), e.g,

speeches = |
("Martin Luther King Jr.",

(
(
(
(

"I Have a Dream",
"Abraham Lincoln", "Gettysburg Address",
"Hillary Clinton", "Women's Rights Are Human Rights",
"Barack Obama", "Yes We Can",
"Eleanor Roosevelt", "The Struggle for Human Rights",

2631),

1865)

The goal will be to sort the speeches by the average words per year since the speech was given, and

to display them from highest to lowest average words per year.

Let’s break it down as follows.

A. Write the function avg_words_per_year(speech) function which accepts a tuple and returns the
average number of words since the current year (2025, in our case), rounded to one decimal place. In

other words, you want to calculate the following:

average words per year = word count /

The round function is defined as follows, which rounds a number to ndigits:

round (number, ndigits)
Example:

>>> round(1.777, 1)
1.8

Write the function below:

CURRENT YEAR = 2025

def avg words per year (speech):

example input:

("Martin Luther King Jr.",

YOUR CODE HERE:

(CURRENT YEAR - year)

"I Have a Dream",

average words_per year = round(speech[3] / (CURRENT YEAR - speech[2]),1)

return average_words_per_year

Page 10 of 14

Neel Kishnani
11111111pIOQEJfOQIEnf

Neel Kishnani
1

B. Next, use the sorted () function to create a sorted list from the following speeches list of tuples that is
in order from highest to lowest average number of words per year:

speeches = |
("Martin Luther King Jr.", "I Have a Dream", 1963, 1664),
("Abraham Lincoln", "Gettysburg Address", 1863, 272),
("Hillary Clinton", "Women's Rights Are Human Rights", 1995, 2631),
("Barack Obama", "Yes We Can", 2008, 2151),
("Eleanor Roosevelt", "The Struggle for Human Rights", 1948, 1865)
]

sorted speeches = sorted(speeches, key=avg words per year, reverse=True)

C. Finally, write a for loop that prints each speech from sorted speeches in the following form:

Barack Obama: 'Yes We Can' (2008) - 126.53 words per year
Hillary Clinton: 'Women's Rights Are Human Rights' (1995) - 87.7 words per year
etc.

Write your code below:

for speech in sorted speeches:
YOUR CODE HERE:
for speech in sorted_speeches:
awpy = avg_words_per year (speech)
print (£" {speech[0]}: '{speech[l]}' ({speech[2]}) - {awpy} words per
year")

Page 11 of 14

Problem 6: Classes (20 points)

Implement a class Library with the following methods:

. init(self) -initializes a new Library instance and any member variables

i return_book(self, title) - returns a book to the library with the given title

i check_out(self, title) - removes a book from the library with the given title, or prints 'No
book with that title' if that book isn't found

° get_catalog(self) - returns a list of all books currently in the library, sorted alphabetically

Here's how your class might be used from another program.

from library import Library

def main
green library = Library
green_ library.return book('Karel the Robot Learns Python'
green library.return book('The Giving Tree'
green library.return book('Design as Art’

print (green library.get catalog
green_ library.check out ('The Giving Tree’

green_ library.check out (‘Annihilation’

print (green library.get catalog

On the following page, please implement the Library class

class Library:
def __init__(self):

Creates a new instance of the Library class

instance variable to keep track of the book titles

self.library = []

def return_book(self, title):

Returns a book with the given title to the library

self.library.append(title)

def check_out(self, title):

Removes a book with the given title from the library, or prints
"No book with that title' if that book isn't found

“nn

if title in self.library:
self.library.remove (title)
else:

print (“No book with that title”)

def get_catalog(self):

Returns a 1list of all books currently in the library, sorted
alphabetically

return sorted(self.library)

