
Midterm Review Session

Brahm Capoor

Logistics

May 10th, 1:30 - 2:20 p.m.

Last names A-L: Hewlett 200

Last names M-Z: 420-040

Come a little early!

BlueBook

Download for Mac here

Download for Windows here

Handout here

Make sure to have it installed and set up
before the exam

http://web.stanford.edu/class/cs106ap/exams/Mac-BlueBook-1.1.0.dmg
http://web.stanford.edu/class/cs106ap/exams/Bluebook_1.1.0_Windows.exe
http://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Taking-An-Exam-On-BlueBook.pdf

Concepts Practice

Concepts

PracticeThe better you understand how
everything fits together, the more
able you’ll be to do new problems!

Concepts

Practice

Practice allows you to build a
muscle memory for common ways
of solving problems!

Where to find practice problems

Practice Midterm + Additional Practice Problems

Section Handouts (especially this week’s)

Scattered throughout these slides

Lecture slides and homework

http://web.stanford.edu/class/cs106ap/handouts/midterm-18-2-solution.html
http://web.stanford.edu/class/cs106ap/handouts/midterm-pre.html
http://web.stanford.edu/class/cs106ap/section/section5/Section5.html

Variables & Control Flow

Functions

Images *

Strings *

The Game Plan

Files

Lists *

Parsing *

Dictionaries and Counting *

sections with a * have practice problems

Variables & Control Flow

Variables: how we store information in a program

x = 42 # assigning a variable x 42

x = 42 # assigning a variable
x = 100 # reassigning the variable

x 42

100

Variables: how we store information in a program

x = 42 # assigning a variable
x = 100 # reassigning the variable
y = x # copying the value from
 # x into y

x 42

100

y 100

Variables: how we store information in a program
42

100

x = 42 # assigning a variable
x = 100 # reassigning the variable
y = x # copying the value from
 # x into y
y = 5 # we only change y, not x

x

y

5

Variables: how we store information in a program

100

42

100

Other useful things to know about variables

You can add, subtract, divide, and multiply ints:

x = x + 10 | x = x - 42 | x = x // 8 | x = x * 6

Remember, dividing ints always rounds down, i.e. 5 // 2 = 2, not 2.5

The operations above can be simplified as follows:

x += 10 | x -= 42 | x //= 8 | x *= 6

Control flow: the steps our program takes

if bit.front_clear():
sick code here

Control flow: the steps our program takes

if bit.front_clear():
sick code here

if statements require a
condition

Control flow: the steps our program takes

if bit.front_clear():
sick code here

conditions evaluate to
True or False

Control flow: the steps our program takes

if bit.front_clear():
sick code here

An if statement will only
execute if the condition

evaluates to True

Control flow: the steps our program takes

if bit.front_clear():
sick code here

If the condition is True, the
code inside the if statement will

happen exactly once

Control flow: the steps our program takes

if bit.front_clear():
sick code here

more sick code here

Once the code inside the if
statement has completed, the
program moves on, even if the

condition is still True

Control flow: the steps our program takes

while bit.front_clear():
sick code here

Control flow: the steps our program takes

while bit.front_clear():
sick code here

while loops also require
a condition, which

behaves in exactly the
same way

Control flow: the steps our program takes

while bit.front_clear():
sick code here

The difference is that the
while loop repeats so
long as the condition is

True

Control flow: the steps our program takes

while bit.front_clear():
sick code here

more sick code here

We only move on when
the condition evaluates

to False

Control flow: the steps our program takes

for i in range(42):
sick code here

Control flow: the steps our program takes

for i in range(42):
sick code here

A for loop goes through
each of the elements of

some collection of things

Control flow: the steps our program takes

for i in range(42):
sick code here

The range function gives us an
ordered collection of all the

non-negative integers below a
particular number

Control flow: the steps our program takes

for i in range(42):
sick code here

“Go through all the numbers until
42, one by one”

Control flow: the steps our program takes

for pixel in image:
sick code here

“Go through all the pixels in
image, one by one”

Control flow: the steps our program takes

for pixel in image:
sick code here

more sick code here

The for loop ends when we’ve
gone through all the things in the

collection

Other useful things to know about control flow

range(10, 42) - all the numbers between 10 (inclusive) and 42 (exclusive)

range(10, 42, 2) - all the numbers between 10 (inclusive) and 42 (exclusive),
 going up by 2 each time

Functions

def my_function(a, b):
a += 2
b = 7
c = a * b
return c + 1

When we define a function, we make
two promises:

def my_function(a, b):
a += 2
b = 7
c = a * b
return c + 1

When we define a function, we make
two promises:
1. The inputs, or parameters, to

the function

When we define a function, we make
two promises:
1. The inputs, or parameters, to

the function
2. What we’re returning

def my_function(a, b):
a += 2
b = 7
c = a * b
return c + 1

When we define a function, we make
two promises:
1. The inputs, or parameters, to

the function
2. What we’re returning

def my_function(a, b):
a += 2
b = 7
c = a * b
return c + 1>>> my_function(2, 42)

29

>>> my_function(10, 15)
85

Function PARAMETERS RETURN VALUES

(as many as you
need)

(one or none)

Function PARAMETERS RETURN VALUES

(as many as you
need)

(one or none)

When we’re writing a
function, we don’t care
where the parameters

come from

Function PARAMETERS RETURN VALUES

(as many as you
need)

(one or none)

...or where the return
value is going

Function PARAMETERS RETURN VALUES

(as many as you
need)

(one or none)

Our only job is to
take the parameters

we’re given, and
produce the return
value we promised.

Other useful things to know about functions

Functions can’t see each other’s variables unless they’re passed in as
parameters or returned

Other useful things to know about functions

Functions can’t see each other’s variables unless they’re passed in as
parameters or returned

As a consequence, it’s fine to have variables with the same name in different
functions

Other useful things to know about functions

Functions can’t see each other’s variables unless they’re passed in as
parameters or returned

As a consequence, it’s fine to have variables with the same name in different
functions

A function can only change its own variables, and not those of its caller

Other useful things to know about functions

Functions can’t see each other’s variables unless they’re passed in as
parameters or returned

As a consequence, it’s fine to have variables with the same name in different
functions

A function can only change its own variables, and not those of its caller

def caller():
x = 42
callee(x)
print(x) # this still prints 42

def callee(x):
x = x + 10 # we’re only changing callee’s

 # copy of x

A great strategy for tracing
programs: draw variables as
boxes, and go line-by-line
through the program

Programs have a information flow, and a text output area, and those are separate.
- When a function returns something, that’s information flowing out of the

function to another function
- When a function prints something, that’s information being displayed on the

text output area (which is usually the terminal)

A useful metaphor is viewing a function as a painter inside a room
- Returning is like the painter leaving the room and telling you something
- Printing is like the painter hanging a painting inside the room
- The painter can do either of those things without affecting whether they do the

other thing

Printing is sometimes described as a side effect, since it doesn’t directly influence
the flow of information in a program

Printing vs Returning

Images

SimpleImages

img = SimpleImage(‘buddy.png’)

Images

img = SimpleImage(‘buddy.png’)

height = img.height # 10

width = image.width # 6

Images

img = SimpleImage(‘buddy.png’)

height = img.height # 10

width = image.width # 6

pixel = img.get_pixel(2, 4)

Pixels
A pixel represents a single color, and is decomposed into three components,
each of which is out of 255:

- How red the color is
- How green the color is
- How blue the color is

pixel = img.get_pixel(42, 100)

red_component = pixel.red

pixel.green = 42

pixel.blue = red_component // 2

Two common code patterns for images

for pixel in image:
we don’t have access to the coordinates of pixel

for y in range(image.height):
for x in range(image.width):

pixel = image.get_pixel(x, y)
now we do have access to the coordinates of pixel

Two common code patterns for images

for pixel in image:
we don’t have access to the coordinates of pixel

for y in range(image.height):
for x in range(image.width):

pixel = image.get_pixel(x, y)
now we do have access to the coordinates of pixel

Both of these loops go over the
pixels in the same order

A problem: make_negative
Implement the following function:

def make_negative(image)

that takes in a SimpleImage as a parameter and returns the negative of the image. The
negative of an image is an image whose pixel’s color components are set to their
inverse. The inverse of a color component c is 255 - c.

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

Solving problems is about strategic
procrastination: what’s easy that we can

do quickly?

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

We definitely need to return the
(modified) image, so let’s do that first.

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

Now, we definitely need to loop over
the pixels of the image. Do we need

their coordinates?

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

...probably not! Let’s just use a single
for loop.

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

Now, we’ve simplified the problem for
ourselves: what do we do with a single

pixel in order to solve the problem?

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

Invert it, just like the problem suggests!

def make_negative(image):

for pixel in image:

pixel.red = 255 - pixel.red

pixel.green = 255 - pixel.green

pixel.blue = 255 - pixel.blue

return image

Another problem:
Implement the following function:

def transform(image)

which takes in a SimpleImage as a parameter and returns an upside-down version of the
image whose red pixels (those whose red components are more than 2 times the
average color component of that pixel) have been replaced by their grayscale
equivalents.

Some useful hints
Whenever you’re moving pixels around, it’s usually easier to make a new image and
copy pixels into it, like so:

out_image = SimpleImage.blank(image.width, image.height)
for out_y in range(out_image.height):

for out_x in range(out_image.width):
out_pixel = out_image.get_pixel(out_x, out_y)
in_pixel = in_image.get_pixel(<calculate coordinates here>)
out_pixel.red = # some value, possibly based on in_pixel
out_pixel.green = # some value, possibly based on in_pixel
out_pixel.blue = # some value, possibly based on in_pixel

Some useful hints
Whenever you’re calculating coordinates, drawing diagrams is your best course of
action, like so:

(This is an actual diagram I drew
in office hours to explain the
mirror problem! Your diagram
doesn’t need to be neat, it just
needs help you calculate
coordinates)

The solution
def transform(image):

out_image = SimpleImage.blank(image.width, image.height)

for out_y in range(out_image.height):

for out_x in range(out_image.width):

out_pixel = out_image.get_pixel(out_x, out_y)

upside_down_y = image.height - 1 - out_y # see next slide

in_pixel = image.get_pixel(out_x, upside_down_y)

sum_color = in_pixel.red + in_pixel.green + in_pixel.blue

average_color = sum_color // 3

if in_pixel.red > 2 * average_color:

out_pixel.red = average_color

out_pixel.green = average_color

out_pixel.blue = average_color

else:

out_pixel.red = in_pixel.red

out_pixel.green = in_pixel.green

out_pixel.blue = in_pixel.blue

return out_image

The picture I drew

A great question from Piazza: when should I loop over the output pixels,
and when should I loop over the input pixels?

tl;dr - Do whatever’s easier!

https://piazza.com/class/jtyxfhxipo25x1?cid=174

Strings

A string is a variable type representing some arbitrary text:

s = ‘We demand rigidly defined areas of doubt and uncertainty!’

and consists of a sequence of characters, which are indexed starting at 0.

eighth_char = s[7] # ‘n’

We can slice out arbitrary substrings by specifying the start and end indices:

string_part = s[10:20] # ‘rigidly de’

The start index is inclusive,
and can be omitted if you

want to start at the beginning
of s

The end index is exclusive,
and can be omitted if you

want to go until the end of s

Useful String functions
>>> s = ‘So long, and thanks for all the fish’
>>> len(s)
36
>>> s.find(‘,’) # returns the first index of the character
7
>>> s.find(‘z’)
-1 # returns -1 if character isn’t present
>>> s.find(‘n’, 6) # start searching from index 6
10
>>> s.lower() # islower() also exists, returns true if all lowercase
‘so long, and thanks for all the fish’ # returns a string, doesn’t modify
>>> s.upper() # isupper() also exists, returns true if all uppercase
‘SO LONG, AND THANKS FOR ALL THE FISH’

An important nuance: strings are immutable
str = ‘brahm’

str
‘brahm’

string reference string literal

An important nuance: string literals are immutable
str = ‘brahm’

str
‘brahm’

string reference string literal

...but references aren’t!
str = str.upper()

str
‘brahm’

string reference

‘BRAHM’

new string literal

This leads to a common pattern for String problems

s = ‘banter’
result = ‘’
for i in range(len(s)):

ch = s[i]
newChar = # process ch
result = result + newChar;

result and result + newChar
are different literals

Why are Strings immutable?

¯_(ツ)_/¯
There’s actually a cool reason! Come and chat about it afterwards or in office hours!

A problem: remove_doubled_letters
Implement the following function:

def remove_doubled_letters(s)

that takes in a String as a parameter and returns a new string with all doubled letters in
the string replaced by a single letter. For example, calling

remove_doubled_letters(‘tresidder’)

would return the string ‘tresider’. Similarly, if you call

remove_doubled_letters(‘bookkeeper’)

the function would return the string ‘bokeper’.

Questions I’d ask myself

What do I do with each character?

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

I go to the index before my current one

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

I go to the index before my current one

Is there anything else I’d need to think about?

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

I go to the index before my current one

Is there anything else I’d need to think about?

The character at index 0 doesn’t have a character before it but needs to go into the string

The solution

def removed_doubled_letters(s):
result = ‘’
for i in range(len(s)):

ch = s[i]
if i == 0 or ch != s[i - 1]:

result += ch
return result

The solution

def removed_doubled_letters(s):
result = ‘’
for i in range(len(s)):

ch = s[i]
if i == 0 or ch != s[i - 1]:

result += ch
return result

The solution

def removed_doubled_letters(s):
result = ‘’
for i in range(len(s)):

ch = s[i]
if ch != s[i - 1]:

result += ch
return result

The solution

def removed_doubled_letters(s):
result = ‘’
for i in range(len(s)):

ch = s[i]
if i == 0 or ch != s[i - 1]:

result += ch
return result

Another problem: extract_quote
Implement the following function:

def extract_quote(s)

that takes in a String as a parameter and returns the text of the first quote in the string,
or a blank string if there are no quotes. A quote is defined as a substring surrounded by
two quotation marks (“).

You may assume that s only has quotation marks when it has quotes.

Another problem: extract_quote
Implement the following function:

def extract_quote(s)

that takes in a String as a parameter and returns the text of the first quote in the string,
or a blank string if there are no quotes. A quote is defined as a substring surrounded by
two quotation marks (“).

You may assume that s only has quotation marks when it has at least one quote.

My key insight

Do I need to loop over the characters here?

I probably could, but it sort of feels like the s.find() function is doing that for me

The solution

def extract_quote(s):
first_quote_index = s.find(‘“’)
if first_quote_index == -1:

return ‘’

second_quote_index = s.find(‘“’, first_quote_index + 1)
quote = s[first_quote_index + 1 : second_quote_index]

return quote

Files

Files, in one slide

def print_out_file(filename):
with open(filename, ‘r’) as f:

for line in f:
print(line, end=‘’)

Files, in one two slides

def print_out_file(filename):
with open(filename, ‘r’) as f:

for line in f:
print(line, end=‘’)

We open the file, specifying that we
want to read through it, and give it a

nickname of f

Files, in one two three slides

def print_out_file(filename):
with open(filename, ‘r’) as f:

for line in f:
print(line, end=‘’)

f is a collection of lines of text, so we
can use a for loop to go through each

of those lines

Files, in one two three four slides

def print_out_file(filename):
with open(filename, ‘r’) as f:

for line in f:
print(line, end=‘’)

Since the line in the file already has a
newline character at the end, we

shouldn’t add another one when we
print

Roses are red,\n
Violets are blue,\n
Poetry is hard,\n
So I give up.\n

Files, in one two three four slides

def process_file(filename):
with open(filename, ‘r’) as f:

for line in f:
process the line

don’t worry
about it

This is a general pattern you can use
whenever you need to read through a

file

Files, in one two three four slides

def process_file(filename):
with open(filename, ‘r’) as f:

for line in f:
process the line

don’t worry
about it

You can just pretty much stick this right
in there without thinking! Just be careful

to adjust the filename if needed.

Lists

A list is a variable type representing a list linear collection of elements of any type:

num_list = [4, 2, 1, 3]
str_list = [‘ax’, ‘bc’]

They work pretty much exactly the same way as strings:

>>> len(num_list)
4
>>> str_list[1]
‘bc’
>>> num_list[1 : 3]
[2, 1]

You can make an empty list using square brackets

lst = []

And then stick stuff in it using the append method:

for i in range(5):
lst.append(i)

lst now is [0, 1, 2, 3, 4]

You can also stick another list at the end using the extend method:

second_lst = [8, 9, 10]
lst.extend(second_list) # lst is now [0, 1, 2, 3, 4, 8, 9, 10]

Note that each of these functions modifies the list, rather than returning a new one.

You can also sort a list:

nums = [0, 9, 4, 5]
nums = sorted(nums)

and print it out:

print(nums) # prints [0, 9, 4, 5]

and check whether it contains an element:
>>> 3 in nums
False

You can also put lists inside other lists!
>>> lst = []
>>> lst.append([1, 2, 3])
>>> lst.append([42, 100])
>>> print(lst)
[[1, 2, 3], [42, 100])

A problem: multiples
Implement the following function:

def multiples(lst)

that takes in as a parameter a list of numbers and returns a new list such that each of its
elements a list containing the first 3 positive multiples of the corresponding element in
the original list.

>>> multiples([5, 42, 100])
[[5, 10, 15], [42, 84, 126], [100, 200, 300]]

Your function should not modify the original lst parameter.

The solution
def multiples(lst):

result = []
for i in range(len(list):

num = lst[i]
multiples_lst = []
for multiple in range(1, 4):

multiples_lst.append(multiple * num)
result.append(multiples_lst)

return result

We’ll start with a skeleton that looks
mostly like our string problem structure:

a result, a for loop, and a return.

The solution
def multiples(lst):

result = []
for i in range(len(list):

num = lst[i]
multiples_lst = []
for multiple in range(1, 4):

multiples_lst.append(multiple * num)
result.append(multiples_lst)

return result

Now, we’re going to need to stick a list
of multiples in result, so let’s make

that list

The solution
def multiples(lst):

result = []
for i in range(len(list):

num = lst[i]
multiples_lst = []
for multiple in range(1, 4):

multiples_lst.append(multiple * num)
result.append(multiples_lst)

return result

Now, let’s pretend that multiples_lst
has the correct elements (it definitely

doesn’t, yet). We put it in result.

The solution
def multiples(lst):

result = []
for i in range(len(list):

num = lst[i]
multiples_lst = []
for multiple in range(1, 4):

multiples_lst.append(multiple * num)
result.append(multiples_lst)

return result

Now, we just need to fill
multiples_lst with the first 3

multiples of num!

Parsing

When we’re parsing a string, we’re trying to extract all the substrings that match a
particular pattern

- Extracting all the emails from a file
- Extracting words from noisy data
- Assignment 5.1 😱

There’s a canonical structure we use to parse strings. If you understand that structure,
you understand everything you need to for parsing!

An explanatory example: getting prerequisites
CS18SI: William Janeway describes the relationship between technological development, capital markets, and
the government as a three-player game. Scientists and entrepreneurs develop breakthrough innovations, aided
and amplified by financial capital. Meanwhile, the government serves to either subsidize (as in wartime) or stymie
(through regulations) technological development. Often, the advances in economic and military might due to
technological advances lead to conflicts between competing countries, whether Japan and the U.S. in the 1970s,
or China and the U.S. today. Within societies, technological innovation drives outcomes like increased life
expectancy, wealth inequality, and in rare cases changes to paradigms of daily life. In this discussion-driven
course, we will explore the ripple effects that technological developments have had and will continue to have on
the geopolitical world stage, focusing on trends we as computer scientists are uniquely positioned to understand
and predict the ramifications of. Prerequisites: The following are not required but will facilitate understanding of
the topics covered: computer systems (CS110+), artificial intelligence (CS221, CS231N, CS229, or CS230), and
theory (CS161, cryptography)

https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS110
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS221
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS231N
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS229
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS230
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS161

An explanatory example: getting prerequisites
CS18SI: William Janeway describes the relationship between technological development, capital markets, and
the government as a three-player game. Scientists and entrepreneurs develop breakthrough innovations, aided
and amplified by financial capital. Meanwhile, the government serves to either subsidize (as in wartime) or stymie
(through regulations) technological development. Often, the advances in economic and military might due to
technological advances lead to conflicts between competing countries, whether Japan and the U.S. in the 1970s,
or China and the U.S. today. Within societies, technological innovation drives outcomes like increased life
expectancy, wealth inequality, and in rare cases changes to paradigms of daily life. In this discussion-driven
course, we will explore the ripple effects that technological developments have had and will continue to have on
the geopolitical world stage, focusing on trends we as computer scientists are uniquely positioned to understand
and predict the ramifications of. Prerequisites: The following are not required but will facilitate understanding of
the topics covered: computer systems (CS110+), artificial intelligence (CS221, CS231N, CS229, or CS230), and
theory (CS161, cryptography)

https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS110
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS221
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS231N
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS229
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS230
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS161

An explanatory example: getting prerequisites
CS18SI: William Janeway describes the relationship between technological development, capital markets, and
the government as a three-player game. Scientists and entrepreneurs develop breakthrough innovations, aided
and amplified by financial capital. Meanwhile, the government serves to either subsidize (as in wartime) or stymie
(through regulations) technological development. Often, the advances in economic and military might due to
technological advances lead to conflicts between competing countries, whether Japan and the U.S. in the 1970s,
or China and the U.S. today. Within societies, technological innovation drives outcomes like increased life
expectancy, wealth inequality, and in rare cases changes to paradigms of daily life. In this discussion-driven
course, we will explore the ripple effects that technological developments have had and will continue to have on
the geopolitical world stage, focusing on trends we as computer scientists are uniquely positioned to understand
and predict the ramifications of. Prerequisites: The following are not required but will facilitate understanding of
the topics covered: computer systems (CS110+), artificial intelligence (CS221, CS231N, CS229, or CS230), and
theory (CS161, cryptography).

Let’s define a class name as at least one letter, followed by a sequence of
letters and numbers. Given a string containing a class’s description, we
want to parse out all of the classes mentioned in the description.

https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS110
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS221
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS231N
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS229
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS230
https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&q=CS161

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = # ¯_(ツ)_/¯

while begin < len(s) and not s[begin].isalpha():
begin += 1

if begin >= len(s):
break

end = # ¯_(ツ)_/¯ ¯_(ツ)_/¯
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Let’s start simple, and pretend we only
need to find one prereq, and magically
know exactly where in the description it

starts and ends

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = # ¯_(ツ)_/¯
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = # ¯_(ツ)_/¯ ¯_(ツ)_/¯
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

We need to do this for multiple
prereqs, so let’s use a loop. We’ll keep

pretending that begin and end are
always correct, and we’ll use a while
True loop because we’re lazy. We’ll
worry about ending the loop later.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = # ¯_(ツ)_/¯ ¯_(ツ)_/¯
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Now, let’s try and get begin correct for
the first prereq in the description.

Because it needs some initial value,
we’ll just say 0 (the start of the string).

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = # ¯_(ツ)_/¯ ¯_(ツ)_/¯
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Now, let’s move begin along the string
until we find an alphabetical character.
So long as we’re not at an alphabetical
character yet, we move one to the right

by adding 1 to begin.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = # ¯_(ツ)_/¯ ¯_(ツ)_/¯
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

We should probably make sure that
begin doesn’t fall off the end of the

string. The maximum valid index in s is
len(s) - 1 , so we can just make sure

that begin < len(s)

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = # ¯_(ツ)_/¯ ¯_(ツ)_/¯
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Now that we’re checking begin <
len(s), the inner while loop might

end because there weren’t any
alphabetical characters and so we

reached the end of the string. If that’s
the case, we should stop searching.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Now that we have a correct value for
begin, we know that end is at least one

greater than begin, since the class
name is at least one character long.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Now, let’s make sure end is correct. So
long as it’s at an alphanumeric

character, we should shift it along one.
When the loop ends, it should point at

the first non-alphanumeric character
after begin.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Just like the last time, we should also
make sure that end doesn’t fall off the

end of the string.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = 0
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

This looks great! The only problem is
that every time the outer while True

loop restarts, we start searching from
the beginning again. Ideally, we’d start

searching from the end of the last
prereq we found.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = search
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)

return prereqs

Let’s pretend we have a variable called
search, which magically tells us where
we should start searching from inthe

while True loop. Now, at the beginning
of the loop, we can just set begin

equal to search instead of 0.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = search
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)
search = end + 1

return prereqs

Then, at the end of the loop, we should
indicate that we should search from the

end of the prereq we just found. We
know end is pointing at a

non-alphanumeric character, so we can
start searching from the one after that.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = search
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)
search = end + 1

return prereqs

Now, all we need to do is make sure
search has some initial value for when

we begin. Since we want to start
searching at the beginning of the

string, we can just set it to 0.

How we do it
def get_prerequisites(s):

prereqs = []
search = 0

while True:
begin = search
while begin < len(s) and not s[begin].isalpha():

begin += 1

if begin >= len(s):
break

end = begin + 1
while end < len(s) and s[end].isalnum():

end += 1

prereq = s[begin : end]
prereqs.append(prereq)
search = end + 1

return prereqs

And we’re done!

This is a really hard piece of code to understand, and is a strict ceiling on how difficult
the parsing problems on the exam will be.

Make sure you can understand it, and also answer these questions for yourself:
- Why don’t we need to check if end >= len(s) and break the loop, like we do

with begin?
- We made the decision to use a while True loop here because we were being

lazy. Why is that actually the best decision? What’s the difference between a
while True loop and the other while loops you’ve seen so far?

- Would there have been any problems if we had set search=end, rather than
search=end + 1?

If you’ve internalized that code, and can answer those questions, you should be good
to go for parsing problems. Understand also how you could adapt this structure to
solve other parse problems you’ve seen in lecture or homework.

The answers to those questions are on the next few slides, but you should think about
them and try and figure out your answers first.

Why don’t we need to check if end >= len(s) and break the loop, like we do with
begin?

Answer: the loop that increments end definitely could finish with end pointing at the
end of the string, but that’s totally fine! We’re not using end as an inclusive index (since
slices are exclusive of the second index).

The next time the while True loop begins, search will be pointing off the end of the
string, and so the while loop controlling begin won’t even start and we’ll break out of
the while True loop because begin will be greater than the index at the end of the
string.

We made the decision to use a while True loop here because we were being lazy.
Why is that actually the best decision? What’s the difference between a while True
loop and the other while loops you’ve seen so far?

A while True loop — combined with a break somewhere in the body of the loop —
is sometimes called a loop and a half. The idea is that before you check the condition
of the while loop, you want to do some work. For example, in this case, we want to
check whether begin is pointing at the end of the string, but before we do that, we
want to increment it past all the non-alphabetic characters we can. A loop and a half is
a nice way of being able to do that work inside the while loop.

You could probably finesse some way of using a more conventional while loop here,
but all the solutions I could think of are pretty messy and less generalizable to other
parsing problems, so I’d caution against it.

Would there have been any problems if we had set search=end, rather than
search=end + 1?

Nope! End is pointing at a non-alphanumeric character, so we don’t need to search
through it, but we could, if we wanted to.

A nice intuition is that each of the inner while loops acts sort of like a str.find()
function, except instead of searching for a particular string, we’re searching for a
particular pattern of string. This helps explain why it’s fine to search from a character
that you know is not correct, but it won’t break anything.

Dictionaries and Counting

Dictionaries allow us to build one-way associations between one kind of data (which
we call the key) and another (which we call the value). A common metaphor for them is
a phone book, whose keys are people’s names and whose values are their phone
numbers. It’s super easy to look someone’s number up if you know their name, but
harder to do it the other way around.

>>> d = { } # make an empty dictionary
>>> d[‘brahm’] = 42 # associate the key ‘brahm’ with the value 42
>>> d[‘nick’] = 5 # associate the key ‘nick’ with the value 5
>>> d[‘nick’] = 8 # change the value for ‘nick’ to be 8
 # since keys need to be unique
>>> d[‘brahm’] # get the value associated with ‘brahm’
42
>>> ‘python’ in d # check whether a particular key is in the map
False

The dict-count algorithm
One of the most important uses of dictionaries is using them to count the occurrences
of other things, since they allow us to directly associate things with their frequencies.

It’s so important that there’s a pretty generic piece of code we can use when solving a
problem like this. Let’s make sure we understand how it works.

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 0
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

The general problem setup is thus: we
have a collection of things we want to
count (this could be a file, or a list, or a

string), and want to print out the
frequency of each thing.

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 0
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

First, we set up a counts dictionary,
which will associate each thing (as a

key) with the number of times it occurs
(as a value)

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 0
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

Then, we just loop through each thing
in the collection. This looks a little

different based on what the collection
actually is, and we’ll assume that it’s a

list here.

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 00
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

If we haven’t seen this particular thing
before, we need to make sure that it’s a
key in the map, so we stick it in there

and associate it with a 0.

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 00
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

Now, because we’ve seen the thing, we
need to increment the count in our

counts dictionary.

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 00
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

Once we’ve gone through all the
things, we’re going to print their

frequencies in sorted order (which
would be alphabetical for string keys
and numerical for int keys). Let’s loop
through the sorted keys of counts.

The algorithm
def count_the_things(things_to_count):

counts = {}

for thing in things_to_count:
if thing not in counts:

counts[thing] = 0
counts[thing] += 1

for thing in sorted(counts.keys()):
print(thing, counts[thing])

Then, we just print the thing and how
often it occurs!

Words of wisdom

We are not trying to trick you in this exam. You know how to do all these problems.

For many of you, this is your first programming exam. We know it’s a weird thing to do,
and we are doing our utmost to ensure that if you understand this material, you will do
well.

Stay calm, focus on how to apply what you know to the problems, and keep making
them easier for yourself, as we did in each of the problems tonight.

We are not trying to trick you in this exam. You know how to do all these problems.

For many of you, this is your first programming exam. We know it’s a weird thing to do,
and we are doing our utmost to ensure that if you understand this material, you will do
well.

Stay calm, focus on how to apply what you know to the problems, and keep making
them easier for yourself, as we did in each of the problems tonight.

Good luck!

