
Event-Driven Programming 
and Abstraction

CS106AP Lecture 21



Roadmap
Programming Basics

The Console Images

Data structures

Midterm
Graphics

Object-Oriented 
Programming

Everyday Python

Life after CS106AP!

Day 1!



Graphics

Images

The Console

Data structures

Everyday Python

Midterm

Programming Basics

 

Roadmap

Life after CS106AP!

Day 1!

Object-Oriented 
Programming

Part 1
Part 2

Part 3



Images

The Console

Data structures

Everyday Python

Midterm

Programming Basics

 

Roadmap

Life after CS106AP!

Day 1!

Graphics

Object-Oriented 
Programming

Graphics 1.0

Event-driven 
programming

Graphics 2.0



Today’s 
questions

How can we write programs that 
respond to user actions?

Why do we use classes when writing 
code for other people to use?



Today’s 
topics

1. Review

2. Event-driven programming

3. Classes and abstraction 

4. What’s next?



Review



Encapsulation



Encapsulation is bundling info into one nice package!

● Integration
○ All the smaller parts add up to create the entire functionality
○ Similar to top-down decomposition



Encapsulation is bundling info into one nice package!

● Integration

● Modular development
○ You can separate different types of tasks and know where different 

information/functionality should be.
○ Easier for testing and debugging!



Encapsulation is bundling info into one nice package!

● Integration

● Modular development

● Instance variables (attributes)
○ Knowledge (data) for a specific class stays inside that class.
○ That information is easier to access across methods within that 

class.
○ If you need to access the information outside the class, there’s a 

predefined structure for doing so.



Encapsulation is bundling info into one nice package!

● Integration

● Modular development

● Instance variables (attributes)
○ Knowledge (data) for a specific class stays inside that class.
○ That information is easier to access across methods within that 

class.
○ If you need to access the information outside the class, there’s a 

predefined structure for doing so.

More later today!



Bubbles.py
[more bubbles!]



How do we write programs 
that respond to user actions?



How do we write programs 
that respond to user actions?

Event-driven programming!



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...

mouse listener function
A function that occurs immediately when a 

user triggers a particular mouse event

Definition



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...

mouse listener function
A function that occurs immediately when a 

user triggers a particular mouse event

Definition

clicking, moving, dragging



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...

MOUSE CLICK



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...

MOUSE CLICK



The event listener model

Your code

def main():

...

...

def your_mouse_listener():

...

MOUSE CLICK

The function happens 
immediately, no matter 
where you are in your 
program!



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...

It must take in an event for 
campy to recognize it as a valid 
mouse listener.



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...

event gives us access to 
information about the mouse 
event (e.g. x, y coordinates of the 
click).



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...

2. Use the corresponding campy onmouseevent() function to set up your 
mouse listener

onmouseclicked(mouse_listener_handler)



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...

2. Use the corresponding campy onmouseevent() function to set up your 
mouse listener

onmouseclicked(mouse_listener_handler)

Pass in your mouse listener 
function as the argument



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...

2. Use the corresponding campy onmouseevent() function to set up your 
mouse listener

onmouseclicked(mouse_listener_handler)

Don’t include parentheses 
after the function name!



Bubbles.py
[mouse listener demo]



Creating a mouse listener

1. Write a mouse listener function (handler)

def mouse_listener_handler(event):

...

2. Use the corresponding campy onmouseevent() function to set up your 
mouse listener

onmouseclicked(mouse_listener_handler)



Mouse Listeners and Classes

1. Write a mouse listener function (handler)

def mouse_listener_handler(self, event):

...

2. Use the corresponding campy onmouseevent() function to set up your 
mouse listener

onmouseclicked(self.mouse_listener_handler)

Don’t include parentheses 
after the function name!



Why do we use classes?

● For ourselves
○ Grouping related data and the functions that act on it
○ Modular code development (isolation of particular tasks) 

● For others
○ We hide the implementation details of our code so others don’t 

need to worry about them.
○ They can just use the class, like we do for SimpleImage.

Yesterday!



Why do we use classes?

● For ourselves
○ Grouping related data and the functions that act on it
○ Modular code development (isolation of particular tasks) 

● For others
○ We hide the implementation details of our code so others don’t 

need to worry about them.
○ They can just use the class, like we do for SimpleImage.

Today!



Why do we use classes in code 
meant for others?



Why do we use classes in code 
meant for others?

Abstraction!



abstraction 
Hiding implementation details of a class from 

the clients of that class

Definition

other 
programmers! 



Clients and Interfaces

● Classes—or really any code we write (modules, libraries, etc.)—can be 
thought of from two perspectives.

Slide adapted from Jerry Cain



Clients and Interfaces

● Classes—or really any code we write (modules, libraries, etc.)—can be 
thought of from two perspectives.
○ The code for the class itself is called the implementation.

■ For example, all the code we’ve written inside the 
BubbleGraphics class

Slide adapted from Jerry Cain



Clients and Interfaces

● Classes—or really any code we write (modules, libraries, etc.)—can be 
thought of from two perspectives.
○ The code for the class itself is called the implementation.

■ For example, all the code we’ve written inside the 
BubbleGraphics class

○ Any code that uses a class in any way is called the client
■ For example, the animate_bubble_pop() or 

animate_many_bubbles() functions we wrote today

Slide adapted from Jerry Cain



Clients and Interfaces

● Classes—or really any code we write (modules, libraries, etc.)—can be 
thought of from two perspectives.

● The point at which the client and implementation meet and 
communicate is known as the interface, which serves as both a barrier 
and a communication channel

Slide adapted from Jerry Cain



Clients and Interfaces

● Classes—or really any code we write (modules, libraries, etc.)—can be 
thought of from two perspectives.

● The point at which the client and implementation meet and 
communicate is known as the interface, which serves as both a barrier 
and a communication channel

Slide adapted from Jerry Cain

Interface

Client Implementation



Clients and Interfaces

● Classes—or really any code we write (modules, libraries, etc.)—can be 
thought of from two perspectives.

● The point at which the client and implementation meet and 
communicate is known as the interface, which serves as both a barrier 
and a communication channel

Slide adapted from Jerry Cain

Interface

Client ImplementationWhy?



Information Hiding

● One of the central principles of modern software design is that each 
level of abstraction should hide as much complexity as possible from 
the layers that depend on it. This principle is called information hiding.

Slide adapted from Jerry Cain



Information Hiding

● One of the central principles of modern software design is that each 
level of abstraction should hide as much complexity as possible from 
the layers that depend on it. This principle is called information hiding.

● When you use a function, it is more important to know what the 
function does than to understand exactly how it works. 

Slide adapted from Jerry Cain



Information Hiding

● One of the central principles of modern software design is that each 
level of abstraction should hide as much complexity as possible from 
the layers that depend on it. This principle is called information hiding.

● When you use a function, it is more important to know what the 
function does than to understand exactly how it works. 

○ The underlying details are of interest only to the programmer who 
implements the function. 

Slide adapted from Jerry Cain



Information Hiding

● One of the central principles of modern software design is that each 
level of abstraction should hide as much complexity as possible from 
the layers that depend on it. This principle is called information hiding.

● When you use a function, it is more important to know what the 
function does than to understand exactly how it works. 

○ The underlying details are of interest only to the programmer who 
implements the function. 

○ Clients who use that function as a tool can usually ignore the 
implementation altogether.

Slide adapted from Jerry Cain



Thinking about Objects 

Abstraction boundary (interface)

Diagram adapted from Jerry Cain and image credit to Randall Munroe at xkcd.xom

Client

GRect
GOval
GLine
GLabel

…

Implementation

campy

I need a bunch of 
GRects...

class GRect:
def __init__(self,...):
def move(self, ...):
def rotate(self, ...):



Thinking about Objects 

Diagram adapted from Jerry Cain and image credit to Randall Munroe at xkcd.xom

Client

GRect
GOval
GLine
GLabel

…

Implementation

campy

I need a bunch of 
GRects...

class GRect:
def __init__(self,...):
def move(self, ...):
def rotate(self, ...):

rect = GRect(width,height)
rect.move(dx, dy)
rect.filled = True

Abstraction boundary (interface)



Abstraction protects the data stored in an object

● Getters and setters are the interface to the data
○ These functions provide clients with a specific, limited way of 

accessing the data.
○ If clients could change the data in any way they wanted, things 

could get really messy.



Abstraction protects the data stored in an object

● Getters and setters are the interface to the data
○ These functions provide clients with a specific, limited way of 

accessing the data
○ If clients could change the data in any way they wanted, things 

could get really messy.

● Clients don’t have to worry about constraints on the data
○ The implementation will handle that for them behind-the-scenes!
○ E.g. A PynstaUser shouldn’t be able to add a friend they’re 

already friends with.



Abstraction protects the data stored in an object

● Getters and setters are the interface to the data

● Clients don’t have to worry about constraints on the data

An example!







PyPal.py
[abstraction demo]



What’s next?



Putting it all together!

● How we can leverage encapsulation and abstraction to build complex 
graphical programs that interact with users

● Using all of the skills we’ve learned so far to code a fun game!



Graphics

Images

The Console

Data structures

Everyday Python

Midterm

Programming Basics

 

Roadmap

Life after CS106AP!

Day 1!

Object-Oriented 
Programming

Part 1
Part 2

Part 3


