
CS106L
Winter 2007-2008

Handout #06
January 23, 2008

C Strings

Introduction

C strings are very difficult to work with. Very difficult. In fact, they are so difficult to work with
that C++ programmers invented their own string type so that they can avoid directly using C
strings.

While C strings are significantly more challenging than C++ strings and far more dangerous, no
C++ course would be truly complete without a discussion of C strings. This handout enters the
perilous waters of C strings, memory management and pointer arithmetic.

The content presented in this handout is the most conceptually difficult material we will cover all
quarter. Whereas most of our lectures will focus on high-level libraries and language features, this
handout focuses on internal memory representations and low-level data manipulation. The concepts
expressed here are difficult and take a lot of practice to get used to. However, an understanding of C
strings and pointer arithmetic is important to fully comprehend certain high-level C++ concepts, such
as STL iterators. Thus, while C strings are challenging, you should make an effort to become
familiar with the material, even if you do not plan to use C strings in the future.

What is a C string?

In C++, the string object is a class that expresses many common operations with simple operator
syntax. You can make deep copies with the = operator, concatenate with +, and check for equality
with ==. However, nearly every desirable feature of the C++ string, such as encapsulated memory
management and logical operator syntax, uses language features specific to C++. C strings, on the
other hand, are simply char * character pointers that store the starting addresses of a null-
terminated sequences of characters. In other words, C++ strings exemplify abstraction and
implementation hiding, while C strings among the lowest-level constructs you will routinely
encounter in C++.

Because C strings operate at a low level, they present numerous programming challenges. When
working with C strings you must manually allocate, resize, and delete string storage space. Also,
because C strings are represented as blocks of memory, the syntax for accessing character ranges
requires an understanding of pointer manipulation. Compounding the problem, the C string
manipulation functions are cryptic and complicated.

However, because C strings are so low-level, they have several benefits over the C++ string.
Since C strings are contiguous regions of memory, many of the operations on C strings can be
written in lighting-fast assembly code that can outperform even the most tightly-written C or C++
loops. Indeed, C strings will consistently outperform C++ strings.

Memory representations of C strings

A C string is represented in memory as a consecutive sequence of characters that ends with a
“terminating null,” a special character with value 0. Just as you can use the escape sequences '\n'

for a newline and '\t' for a horizontal tab, you can use the '\0' (slash zero) escape sequence to
represent a terminating null. Fortunately, whenever you write a string literal in C or C++, the
compiler will automatically append a terminating null for you, so only rarely will you need to
explicitly write the null character. For example, the string “Pirate” is actually seven characters long
in C – six for “Pirate” plus one extra for the terminating null. When working with C strings, most of
the time the library functions will automatically insert terminating nulls for you, but you should
always be sure to read the function documentation to verify this. Without a terminating null, C and
C++ won't know when to stop reading characters, either returning garbage strings or causing
crashes.*

The string “Pirate” might look something like this in memory:

Address 1000 P
1001 i
1002 r
1003 a
1004 t
1005 e
1006 \0

Note that while the end of the string is delineated by the terminating null, there is no indication here
of where the string begins. Looking solely at the memory, it's unclear whether the string is “Pirate,”
“irate,” “rate,” or “ate.” The only reason we “know” that the string is “Pirate” is because we know
that its starting address is 1000.

This has important implications for working with C strings. Given a starting memory address, it is
possible to entirely determine a string by reading characters until we reach a terminating null. In
fact, provided the memory is laid out as shown above, it's possible to reference a string by means of
a single char * variable that holds the starting address of the character block, in this case 1000.

Memory segments

Before we begin working with C strings, we need to quickly cover memory segments. When you
run a C++ program, the operating system usually allocates memory for your program in “segments,”
special regions dedicated to different tasks. You are most familiar with the stack segment, where
local variables are stored and preserved between function calls. Also, as mentioned in Handout #05,
there is a heap segment that stores memory dynamically allocated with the new and delete
operators. There are two more segments, the code (or text) segment and the data segment, of which
we must speak briefly.

When you write C or C++ code like the code shown below:

* There's a well-known joke about this: Two C strings walk into a bar. One C string says “Hello, my name is
John#30g4nvu342t7643t5k...”, so the second C string turns to the bartender and says “Please excuse my
friend... he's not null-terminated.”

int main()
{

char *myCString = "This is a C string!";
return 0;

}

The text “This is a C string!” must be stored somewhere in memory when your program begins
running. On many systems, this text is stored in either the read-only code segment or in a read-only
portion of the data segment. When writing code that manipulates C strings, if you modify the
contents of a read-only segment, you will cause your program to crash with a segmentation fault
(sometimes also called an access violation or “seg fault”).

Because your program cannot write to read-only segments, if you plan on manipulating the contents
of a C string, you will need to first create a copy of that string, usually in the heap, where your
program has writing permission. Thus, for the remainder of this handout, any code that modifies
strings will assume that the string resides either in the heap or on the stack (usually the former).
Forgetting to duplicate the string and store its contents in a new buffer can cause many a debugging
nightmare, so make sure that you have writing access before you try to manipulate C strings.

Allocating space for strings

Before you can manipulate a C string, you need to first allocate memory to store it. While
traditionally this is done using older C library functions (briefly described in the “More to Explore”
section), because we are working in C++, we will instead use the new[] and delete[] operators
for memory management.

When allocating space for C strings, you must make sure to allocate enough space to store the entire
string, including the terminating null character. If you do not allocate enough space, when you try to
copy the string from its current location to your new buffer, you will write past the end of the buffer,
which will probably crash your program some point down the line.

The best way to allocate space for a string is to make a new buffer with size equal to the length of the
string you will be storing in the buffer. To get the length of a C string, you can use the handy
strlen function, declared in the header file <cstring>.* strlen returns the length of a string,
not including the terminating null character. For example:

cout << strlen("String!") << endl; // Value is 7
char *myStr = "This is a C string!";
cout << strlen(myStr) << endl; // Value is 19

Thus, if you want to make a copy of a string, to allocate enough space you can use the following
code:

// Assume char *text points to a C string.
char *myCopy = new char[strlen(text) + 1]; // Remember +1 for null

As always, remember to deallocate any memory you allocate with new[] with delete[].

* <cstring> is the Standard C++ header file for the C string library. For programs written in pure C, you'll
need to instead include the header file <string.h>.

Basic string operations

Once you have a buffer capable of holding a copy of a string, you can copy over the string using the
strcpy function, as shown below:

// Assume char *source is initialized to a C string.
char *destination = new char[strlen(source) + 1];
strcpy(destination, source);

Another common string operation is concatenation. To append one C string onto the end of another,
use the strcat function. However, unlike in C++, when you concatenate two strings, you must
manually ensure there is enough allocated space to hold both strings. Here is some code to
concatenate two C strings. Note the amount of space reserved by the new[] call only allocates space
for one terminating null.

// Assume char *firstPart, *secondPart are initialized C strings.
char *result = new char[strlen(firstPart) + strlen(secondPart) + 1];
strcpy(result, firstPart); // Copy the first part.
strcat(result, secondPart); // Append the second part.

As mentioned in Handout #05, you can use bracket syntax to access individual elements pointed at
by a pointer. Thus, when dealing with C strings, we can access individual characters using array
syntax. For example:

// Assume myCString is initialized to "C String Fun!"
// This code might crash if myCString points to memory in a read-only
// segment, so we'll assume you copied it by following the above steps.
cout << myCString << endl; // Output: C String Fun!
cout << myCString[0] << endl; // Output: C
myCString[10] = 'a';
cout << myCString << endl; // Output: C String Fan!

Comparing Strings

When dealing with C strings, you cannot use the built-in relational operators (<, ==, etc.) to check
for equality. As in Java, this will only check to see if the two pointers point to the same object, not
whether the strings are equal. Thus, you must use the strcmp function to compare two strings.
strcmp compares two strings str1 and str2, returning a negative number if str1 precedes str2
alphabetically, a positive number if str1 comes after str2, and zero if str1 and str2 are equal.
Thus, you can use the following code to check for string equality:

// Assume char *str1 and char *str2 are initialized.
if(strcmp(str1, str2) == 0)
 // strings are equal...

Pointer Arithmetic

Because C strings are low-level constructs, string functions assume a familiarity with pointer
arithmetic – the manipulation of pointers via arithmetic operators. This next section is tricky, but is
necessary to be able to fully understand how to work with C strings. Furthermore, if you have been
exposed to this material, in a few weeks, when we cover STL iterators, the syntax will make more
sense.

In C and C++, pointers are implemented as integral data types that store memory addresses of the
values they point to. Thus, it is possible to change where a pointer points by adding and subtracting
values from it.

Let's begin with an example using C strings. Suppose you have the string “Hello!” and a pointer to it
laid out in memory as shown below:

Address 1000 H
1001 e
1002 l
1003 l
1004 o
1005 !
1006 \0

char *myString 1000

Currently, because myString stores memory address 1000, it points to the string “Hello!” What
happens if we write a line of code like the one shown below?

myString = myString + 1;

In C and C++, adding one to a pointer returns a new pointer that points to the item one past the
current pointer's location. In our current example, this is memory address 1001, the start of the string
“ello!” Here is a drawing of the state of memory after performing the pointer arithmetic:

Address 1000 H
1001 e
1002 l
1003 l
1004 o
1005 !
1006 \0

char *myString 1001

In general, adding n to a pointer returns a pointer that points n items further than the original pointer.
Thus, given the above state of memory, if we write myString++, we increment myString to point
to memory location 1002, the string “llo!” Similarly, if afterwards we were to subtract two from
myString by writing myString -= 2, myString would once again contain the value 1000 and
would point to the string “Hello!”

Be careful when incrementing string pointers – it is easy to increment them beyond the ends of the
buffers they point to. What if we were to write the code myString += 1000? The string “Hello!”
is less than 1000 characters long, and pointer myString would point to a value far beyond the end
of the string and into random memory. Trying to read or write from this pointer would therefore
have undefined behavior and would probably result in a crash.

Let us consider one final type of pointer arithmetic, subtracting one pointer from another. Suppose
we have the following C or C++ code:

char *ptr1 = "This is my string!";
char *ptr2 = ptr1 + 4;
cout << (ptr2 – ptr1) << endl;

What will the output be? Logically, we'd expect that since we set the value of ptr2 to be four
greater than ptr1, the result of the subtraction would be four. In general, subtracting two pointers
yields the number of elements between them. Another way to interpret the result of pointer
subtraction is as an array index. Assuming that ptr1 points to the beginning of a C string and that
ptr2 points to an element somewhere in that string, ptr2 - ptr1 will return the numeric index of
ptr2 in the string. This latter interpretation will be important in the upcoming section.

More string functions

Now armed with a understanding of pointer arithmetic, we can consider some more powerful string
manipulation functions. Let us first consider the strstr function, which returns a pointer to the
first occurrence of a given substring inside the specified string. If the substring isn't found, strstr
returns NULL to signify an error.

strstr is demonstrated here:

char *myString = "C strings are difficult.";
char *found = strstr(myString, "if");
if(found == NULL)
 cout << "Substring not found." << endl;
else
 cout << "Substring occurs at index " << (found – myString) << endl;

You can also use the strchr function in a similar way to determine the first instance of a given
character in a string.

One of the more useful string functions is the strncpy function, which copies a specified number of
characters from the source string to the destination. However, strncpy is perhaps one of the most
complicated library functions ever introduced.* Unlike the functions we've seen until this point,
strncpy is not guaranteed to append a terminating null to a string. When you call strncpy, you
specify a destination string, a source string, and a character count. If the end of the source string is
reached before the specified number of characters have been copied, then strncpy will fill the
remainder of the buffer with null characters. Otherwise, you must manually append a terminating
null.

* The CS department's Nick Parlante calls strncpy the “Worst API design ever.”

Although strncpy is complicated, it can be quite useful. For example, the following code
demonstrates how to use strncpy in conjunction with pointer arithmetic to extract a substring from
a source string:

char *GetSubstring(char *str, int start, int length)
{

char *result = new char[length + 1]; // Include space for \0
strncpy(result, str + start, length);
result[length] = '\0'; // Manually append terminating null.
return result;

}

The following table summarizes some of the more useful C string functions. As usual, we have not
covered the const keyword yet, but it's safe to ignore it for now.

size_t strlen (const char *str) int length = strlen("String!");

Returns the length of the C string str, excluding the terminating null
character. This function is useful for determining how much space is
required to hold a copy of a string.

char * strcpy (char *dest,
 const char *src)

strcpy(myBuffer, "C strings rule!");

Copies the contents of the C string str into the buffer pointed to by
dest. strcpy will not perform any bounds checking, so you must
make sure that the destination buffer has enough space to hold the
source string. strcpy returns dest.

char * strcat (char *dest,
 const char *src)

strcat(myString, " plus more chars.");

Appends the C string specified by src to the C string dest. Like
strcpy, strcat will not bounds-check, so make sure you have enough
room for both strings. strcat returns dest.

int strcmp(const char *one,
 const char *two)

if(strcmp(myStr1, myStr2) == 0) // equal

Compares two strings lexicographically and returns an integer
representing how the strings relate to one another. If one precedes two
alphabetically, strcmp returns a negative number. If the two are equal,
strcmp returns zero. Otherwise, it returns a positive number.

const char * strstr(
 const char *src,
 const char *key)

if(strstr(myStr, "iffy") != NULL) // found

Searches for the substring key in the string source and returns a
pointer to the first instance of the substring. If key is not found,
strstr returns NULL.

const char * strchr(
 const char *src,
 int key)

if(strchr(myStr, 'a') != NULL) // found

Searches for the character key in the string source and returns a
pointer to the first instance of the substring. If key is not found,
strchr returns NULL.

(C string functions, contd.)

char * strncpy (char *dest,
 const char *src,
 size_t count)

strncpy(myBuffer, "Theta", 3);

Copies up to count characters from the string src into the buffer
pointed to by dest. If the end of src is reached before count
characters are written, strncpy appends null characters to dest
until count characters have been written. Otherwise, strncpy
does not append a terminating null. strncpy returns dest.

size_t strcspn (const char *source,
 const char *chars)

int firstInt = strcspn(myStr, "0123456789");

Returns the index of the first character in source that matches
any of the characters specified in the chars string. If the entire
string is made of characters not specified in chars, strcspn
returns the length of the string. This function is similar to the
find_first_of function of the C++ string.

size_t strspn (const char *source,
 const char *chars);

int numInts = strspn(myStr, "0123456789");

Returns the index of the first character in source that is not one
of the characters specified in the chars string. If the entire string
is made of characters specified in chars, strspn returns the
length of the string. This function is similar to the
find_first_not_of function of the C++ string.

More to Explore

While this handout has tried to demystify the beast that is the C string, there are several important
topics we did not touch on. If you're interested in learning more about C strings, consider looking
into the following topics:

1. More C++ Pointers: This handout's section on pointers was significantly limited in the
interests of space and readability. We didn't cover the address-of operator &, nor did we talk
about pointers to pointers or the infamous void * pointer. If you plan on using C or C++
more seriously in the future, be sure to read up on your pointers.

2. malloc, realloc, free, and strdup: These four functions are older C memory
management functions that allocate, deallocate, and resize blocks of memory. In
conjunction with strings, they are somewhat easier to use than new and delete. Consider
reading up on these functions if you're interested in programming in pure C.

3. sprintf and sscanf: The C++ stringstream class allows you to easily read and write
formatted data to and from C++ strings. The sprintf and sscanf functions let you
perform similar functions on C strings.

4. Generalized pointer arithmetic: In all of the pointer arithmetic examples we considered in
this handout, our pointers were pointers to chars, variables that are exactly one byte in size.
Thus, when we wrote expressions of the form myString += 4, we saw the string advance
four bytes. However, for other types of pointers, such as int *s, writing the expression
myIntPointer += 4 would not advance myIntPointer by four bytes. Rather, since
ints are four-byte values, myIntPointer would be incremented 4 * 4 = 16 total bytes. If
you enjoy low-level pointer manipulation, or want to get a jump-start on CS107, consider
looking into pointer arithmetic more seriously.

5. Command-line parameters: Have you ever wondered why main returns a value? It's
because it's possible to pass parameters to the main function by invoking your program at
the command line. To write a main function that accepts parameters, change its declaration
from int main() to int main(int argc, char *argv[]). Here, argc is the
number of parameters passed to main (the number of C strings in the array argv), and argv
is an array of C strings containing the parameters. This is especially useful for those of you
interested in writing command-line utilities.

6. C memory manipulation routines: The C header file <cstring> contains a set of
functions that let you move, fill, and copy blocks of memory. Although this is an advanced
topic, some of these functions are useful in conjunction with C strings. For example, the
memmove function can be used to shift characters forward and backward in a string to make
room for insertion of a new substring. Similarly, you can use the memset function to create
a string that's several repeated copies of a character, or to fill a buffer with terminating nulls
before writing onto it.

Practice Problems

1. Explain why the code string myString = "String" + '!' will not work as intended.
What is it actually doing? (Hint: chars can implicitly be converted to ints.)

2. Using pointer arithmetic and the strcspn function, write a function Exaggerate that
increases the value of each non-nine digit in a string by one (see the C++ Strings handout for
more information on this function).

3. Explain why the following code generates an “array bounds overflow” error during
compilation: char myString[6] = "String";

