

Welcome to CS106B!

● Four Handouts
● Today:

● Course Overview
● Where are We Going?
● Introduction to C++

Who's Here Today?
● Biochemistry

● Bioengineering

● Biology

● Business

● Chemical Engineering

● Chemistry

● Classics

● Civil and
Environmental
Engineering

● CME

● Computer Science

● Earth Systems

● Economics

● Mechanical
Engineering

● MS&E

● Musics

● Physics

● Political Science

● Psychology

● Science, Technology,
and Society

● Statistics

● Structural Biology

● Symbolic Systems

● Undeclared!

● Electrical Engineering

● Energy Resources
Engineering

● Environmental
Engineering

● Ethics in Society

● Geological and
Environmental
Sciences

● History

● Linguistics

● Materials Science

● Mathematical and
Computational
Sciences

● Mathematics

Course Staff

Instructor: Keith Schwarz
(htiek@cs.stanford.edu)

Head TA: Zach Galant
(galant@cs.stanford.edu)

The CS106B Section Leaders
The CS106B Course Helpers

mailto:htiek@cs.stanford.edu
mailto:galant@cs.stanford.edu

http://cs106b.stanford.edu

Course Website

http://cs106b.stanford.edu/

Prerequisites

CS106A
(or equivalent)

Required Reading

Required Reading

Hey, that's
us!

Hey, that's
us!

Grading Policies

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationSeven Programming

Assignments

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

First Midterm Exam

Thursday, May 3
7PM – 10PM

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Second Midterm
Exam

Thursday, May 31
7PM – 10PM

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Discussion Sections

● Weekly discussion sections.
● Section attendance is required in CS106B.
● Sign up between Thursday, April 5 at 5:00PM and

Sunday, April 8 15 at 5:00PM at

http://cs198.stanford.edu/section
● You don't need to (and shouldn't!) sign up for a

section on Axess; everything is handled through the
above link.

http://cs198.stanford.edu/section

How Many Units?

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

A Word on the Honor Code...

YOU MAKE
PUPPY
CRY

A Word on the Honor Code...

● Feel free to discuss general ideas with
other students, but do not share any
programs or code (text of the programs).

● Cite all sources you use and everyone
you collaborated with.

● This is not an exhaustive list; please see
Handout #03 for a full discussion of the
Honor Code.

But, on the plus side...

…there's The LaIR!

Getting Help

● LaIR Hours!
● Sunday – Thursday, 6PM – Midnight
● Starts next week.

● Zach's Office Hours in Gates 160
● Monday/Wednesday, 11AM – Noon
● Thursday, 2PM – 4PM

● Keith's Office Hours in Gates 178
● Tuesday, 2 – 4PM

What's Next in Computer Science?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:
● Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

http://www.virginia.gov/images/wholeexecbranch2.jpg

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's
us!

Hey, that's
us!

Building a vocabulary of abstractions
 makes it possible to describesolve

larger classes of problems.

Building a vocabulary of abstractions
 makes it possible to solvedescribe

larger classes of problems.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://1.bp.blogspot.com/-Hwf-U9hRwEI/TX480ONoo6I/AAAAAAAAAcM/fyBi0I5HsUI/s1600/the_great_wave_off_kanagawa.jpg

.

.

.

.

.

.

.

.

.

.

.

. .

Width 1

Width 2

.

.

.

.

.

.

.

Finding the Midpoint

● If the width is 1, Karel is standing on the
midpoint.

● If the width is 2, either position is the
midpoint.

● Otherwise:
● Take two steps forward.
● Find the midpoint of the rest of the world.
● Take one step backward.

A Surprisingly Short Solution

A recursive solution is a solution that is
defined in terms of itself.

Thinking recursively allows you
to solve an enormous class of

problems cleanly and concisely.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

The Discrete Fourier Transform

X k=∑
n=0

N−1

xn⋅e
−2π i

k n
N

Naive Algorithm:
Approximately N2 operations.

Fast Fourier Transform:
Approximately N log N operations.

Naive Algorithm:
Approximately N2 operations.

Fast Fourier Transform:
Approximately N log N operations.

N N2 N log N

10 102

102

103

104

105

106

104

106

108

1010

1012

10

2 × 102

3 × 103

4 × 104

5 × 105

6 × 106

N N2 N log N

10 102

102

103

104

105

106

104

106

108

1010

1012

10

2 × 102

3 × 103

4 × 104

5 × 105

6 × 106

This is about
160,000 times

faster!

This is about
160,000 times

faster!

At one operation per nanosecond, what's
the largest N for which we can compute an

answer in one second?

N log N2: About 30,000.
N log N:2 About 150,000,000.

At one operation per nanosecond, what's
the largest N for which we can compute an

answer in one second?

N log N2: About 30,000.
N log N:2 About 150,000,000.

At one operation per nanosecond, what's
the largest N for which we can compute an

answer in one second?

N log N2: About 30,000.
N log N:2 About 150,000,000.

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/MESSENGER.jpg/1024px-MESSENGER.jpg

Assume there are N objects in space.

Naive Algorithm:
Approximately N2 calculations / frame.

Fast Monopole Method:
Approximately N calculations / frame.

Assume there are N objects in space.

Naive Algorithm:
Approximately N2 calculations / frame.

Fast Monopole Method:
Approximately N calculations / frame.

Assume there are N objects in space.

Naive Algorithm:
Approximately N2 calculations / frame.

Fast Monopole Method:
Approximately N calculations / frame.

At one operation per nanosecond, what's
the largest N for which we can compute

sixty frames per second?

N2: About 6,500.
N:2 About 42,000,000.

At one operation per nanosecond, what's
the largest N for which we can compute

sixty frames per second?

N2: About 6,500.
N:2 About 42,000,000.

At one operation per nanosecond, what's
the largest N for which we can compute

sixty frames per second?

N2: About 6,500.
N:2 About 42,000,000.

Quantitatively analyzing algorithms lets
us compare different processes and reason

about their performance.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Who's Here Today?
● Biochemistry

● Bioengineering

● Biology

● Business

● Chemical Engineering

● Chemistry

● Classics

● Civil and
Environmental
Engineering

● CME

● Computer Science

● Earth Systems

● Economics

● Mechanical
Engineering

● MS&E

● Musics

● Physics

● Political Science

● Psychology

● Science, Technology,
and Society

● Statistics

● Structural Biology

● Symbolic Systems

● Undeclared!

● Electrical Engineering

● Energy Resources
Engineering

● Environmental
Engineering

● Ethics in Society

● Geological and
Environmental
Sciences

● History

● Linguistics

● Materials Science

● Mathematical and
Computational
Sciences

● Mathematics

One more detail...

 C + +

C++++ C + +

What is C++?

● Programming language developed in
1983 by Bjarne Stroustrup.

● Widely used for general programming
when performance is important.

● Supports a variety of programming
styles.

/* File: hello-world.cpp
 *
 * A canonical Hello, world! program
 * in C++.
 */

#include <iostream>
using namespace std;

int main() {
 cout << "Hello, world!" << endl;
}

/* File: retain-evens.cpp
 *
 * A program to filter out odd numbers from a list.
 */
#include <iostream>
#include "vector.h"
using namespace std;

Vector<int> retainEvens(Vector<int> values) {
 Vector<int> result;
 for (int i = 0; i < values.size(); i++) {
 if (values[i] % 2 == 0)
 result += values[i];
 }
 return result;
}

int main() {
 Vector<int> values;
 values += 1, 2, 3, 4, 5;

 Vector<int> processed = retainEvens(values);

 for (int i = 0; i < processed.size(); i++) {
 cout << processed[i] << endl;
 }
}

CS106L

● Optional, one-unit companion course to
CS106B.

● In-depth treatment of C++'s libraries
and language features.

● Excellent complement to the material
from CS106B; highly recommended!

● Not a replacement for section; it's purely
an add-on.

Next Time

● Welcome to C++!
● Defining functions.
● Reference parameters.
● Introduction to recursion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

