
  

Welcome to CS106B!

● Four Handouts
● Today:

● Course Overview
● Where are We Going?
● Introduction to C++



  

Who's Here Today?
● Biochemistry

● Bioengineering

● Biology

● Business

● Chemical Engineering

● Chemistry

● Classics

● Civil and 
Environmental 
Engineering

● CME

● Computer Science

● Earth Systems

● Economics

● Mechanical 
Engineering

● MS&E

● Musics

● Physics

● Political Science

● Psychology

● Science, Technology, 
and Society

● Statistics

● Structural Biology

● Symbolic Systems

● Undeclared!

● Electrical Engineering

● Energy Resources 
Engineering

● Environmental 
Engineering

● Ethics in Society

● Geological and 
Environmental 
Sciences

● History

● Linguistics

● Materials Science

● Mathematical and 
Computational 
Sciences

● Mathematics



  

Course Staff

Instructor: Keith Schwarz
(htiek@cs.stanford.edu)

Head TA: Zach Galant
(galant@cs.stanford.edu)

The CS106B Section Leaders
The CS106B Course Helpers

mailto:htiek@cs.stanford.edu
mailto:galant@cs.stanford.edu


  

http://cs106b.stanford.edu

Course Website

http://cs106b.stanford.edu/


  

Prerequisites

CS106A
(or equivalent)



  

Required Reading



  

Required Reading

Hey, that's 
us!

Hey, that's 
us!



  

Grading Policies
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55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation
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Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

First Midterm Exam

Thursday, May 3
7PM – 10PM
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Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Second Midterm 
Exam

Thursday, May 31
7PM – 10PM



  

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation



  

Discussion Sections

● Weekly discussion sections.
● Section attendance is required in CS106B.
● Sign up between Thursday, April 5 at 5:00PM and 

Sunday, April 8 15 at 5:00PM at

http://cs198.stanford.edu/section  
● You don't need to (and shouldn't!) sign up for a 

section on Axess; everything is handled through the 
above link.

http://cs198.stanford.edu/section


  

How Many Units?



  

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

    if (!isGrad) return 5;
    if (!wantsFewerUnits) return 5;
    if (reallyBusy()) {

       return 3;
    } else {

       return 4;
    }
}
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A Word on the Honor Code...

YOU MAKE 
PUPPY 
CRY



  

A Word on the Honor Code...

● Feel free to discuss general ideas with 
other students, but do not share any 
programs or code (text of the programs).

● Cite all sources you use and everyone 
you collaborated with.

● This is not an exhaustive list; please see 
Handout #03 for a full discussion of the 
Honor Code.



  

But, on the plus side...



  

…there's The LaIR!



  



  

Getting Help

● LaIR Hours!
● Sunday – Thursday, 6PM – Midnight
● Starts next week.

● Zach's Office Hours in Gates 160
● Monday/Wednesday, 11AM – Noon
● Thursday, 2PM – 4PM

● Keith's Office Hours in Gates 178
● Tuesday, 2 – 4PM



  

What's Next in Computer Science?



  

Goals for this Course

● Learn how to model and solve 
complex problems with computers.

● To that end:
● Explore common abstractions for 

representing problems.
● Harness recursion and understand how to 

think about problems recursively.
● Quantitatively analyze different approaches 

for solving problems.
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http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg



  

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg



  

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun



  

http://www.virginia.gov/images/wholeexecbranch2.jpg



  



  



  



  



  

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's 
us!

Hey, that's 
us!



  



  

Building a vocabulary of abstractions
      makes it possible to describesolve

larger classes of problems.
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● Harness recursion and understand how to 

think about problems recursively.
● Quantitatively analyze different approaches 
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http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg



  

http://1.bp.blogspot.com/-Hwf-U9hRwEI/TX480ONoo6I/AAAAAAAAAcM/fyBi0I5HsUI/s1600/the_great_wave_off_kanagawa.jpg
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Finding the Midpoint

● If the width is 1, Karel is standing on the 
midpoint.

● If the width is 2, either position is the 
midpoint.

● Otherwise:
● Take two steps forward.
● Find the midpoint of the rest of the world.
● Take one step backward.



  

A Surprisingly Short Solution



  

A recursive solution is a solution that is 
defined in terms of itself.



  

Thinking recursively allows you
to solve an enormous class of

problems cleanly and concisely.
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The Discrete Fourier Transform

X k=∑
n=0

N−1

xn⋅e
−2π i

k n
N



  



  

Naive Algorithm:
Approximately N2 operations.

Fast Fourier Transform:
Approximately N log N operations.
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N N2 N log N

10 102

102

103

104

105

106

104

106

108

1010

1012

10

2 × 102

3 × 103

4 × 104

5 × 105

6 × 106



  

N N2 N log N
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102

103

104

105

106

104

106

108
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2 × 102

3 × 103

4 × 104

5 × 105

6 × 106

This is about 
160,000 times 

faster!

This is about 
160,000 times 

faster!



  

At one operation per nanosecond, what's 
the largest N for which we can compute an 

answer in one second?

N log N2: About 30,000.
N log N:2 About 150,000,000.
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http://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/MESSENGER.jpg/1024px-MESSENGER.jpg



  



  



  

Assume there are N objects in space.

Naive Algorithm:
Approximately N2 calculations / frame.

Fast Monopole Method:
Approximately N calculations / frame.
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At one operation per nanosecond, what's 
the largest N for which we can compute 

sixty frames per second?

N2: About 6,500.
N:2 About 42,000,000.
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Quantitatively analyzing algorithms lets 
us compare different processes and reason 

about their performance.
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Engineering

● Environmental 
Engineering
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● History
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● Materials Science

● Mathematical and 
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One more detail...



  

 C  + +



  

C++++ C  + +



  

What is C++?

● Programming language developed in 
1983 by Bjarne Stroustrup.

● Widely used for general programming 
when performance is important.

● Supports a variety of programming 
styles.



  

/* File: hello-world.cpp
 *
 * A canonical Hello, world! program
 * in C++.
 */

#include <iostream>
using namespace std;

int main() {
    cout << "Hello, world!" << endl;
}



  

/* File: retain-evens.cpp
 *
 * A program to filter out odd numbers from a list.
 */
#include <iostream>
#include "vector.h"
using namespace std;

Vector<int> retainEvens(Vector<int> values) {
    Vector<int> result;
    for (int i = 0; i < values.size(); i++) {
        if (values[i] % 2 == 0)
            result += values[i];
    }
    return result;
}

int main() {
    Vector<int> values;
    values += 1, 2, 3, 4, 5;

    Vector<int> processed = retainEvens(values);

    for (int i = 0; i < processed.size(); i++) {
        cout << processed[i] << endl;
    }
}



  

CS106L

● Optional, one-unit companion course to 
CS106B.

● In-depth treatment of C++'s libraries 
and language features.

● Excellent complement to the material 
from CS106B; highly recommended!

● Not a replacement for section; it's purely 
an add-on.



  

Next Time

● Welcome to C++!
● Defining functions.
● Reference parameters.
● Introduction to recursion.
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