

Strings and
Recursion

Friday Four Square!
Today at 4:15PM outside Gates.

Announcements

● Three Handouts Today:
● Assignment 1: Welcome to C++!
● Submitting Assignments
● Debugging with Visual Studio/Xcode

● Assignment 1 (Welcome to C++!) out,
due next Friday, April 13 at 10:00AM.
● Warm up with C++!
● Play around with strings and recursion!

The CS106B Grading Scale

++

+

✓+

✓

✓-

-

--

0

Assignment Grading

● You will receive two scores: a functionality score and
a style score.

● The functionality score is based on correctness.
● Do your programs produce the correct output?
● Do they work on all legal inputs?

● The style score is based on how well your program
is written.
● Are your programs well-structured?
● Do you use variable naming conventions consistently?

Late Days

● Everyone has two free “late days” to use
as you see fit.

● A “late day” is an automatic extension for
one class period (Monday to Wednesday,
Wednesday to Friday, or Friday to
Monday).

● If you need an extension beyond late
days, please talk to Zach.

Section Signups

● Section signups are open right now.
They close Sunday at 5PM.

● Sign up for section at

http://cs198.stanford.edu/section
● Link available on the CS106B course

website.

http://cs198.stanford.edu/section

Strings

Strings

● A string is a (possibly empty) sequence of
characters.

● Strings in C++ are conceptually similar to
strings in Java.

● There are several minor differences:
● Different names for similar methods.
● Different behavior for similar methods

● And some really major differences:
● Two types of strings in C++.

C++ Strings

● C++ strings are represented with the string type.

● To use string, you must

 #include <string>

at the top of your program.

● You can get the number of characters in a string by calling

str.length()

● You can read a single character in a string by writing

str[index]

● Despite the above syntax, C++ strings are not arrays; it's
just a convenient syntactic shortcut.

Operations on Characters

● In C++, the header <cctype> contains a
variety of useful functions that you can
apply to characters.

● The following functions check whether a
character is of a given type:

isalpha isdigit
isalnum islower isupper

isspace ispunct

Strings are Mutable

● In a major departure from Java, C++
strings are mutable and can be modified.

● Change an individual character:

str[index] = ch
● Append more text:

str += text
● These operations directly change the string

itself, rather than making a copy of the
string.

Other Important Differences

● In C++, the == operator can directly be used to compare strings:

 if (str1 == str2) {

 /* strings match */

 }

● In C++, you can search a string for some other string by using the find
method (instead of indexOf). find returns string::npos instead of -1 if
the string isn't found:

 if (str1.find(str2) != string::npos) {

 /* strings match */

 }

● In C++, you can get a substring of a string by calling the substr method.
substr takes in a start position and length (not an end position!)

 string allButFirstChar = str.substr(1);

 string lateChars = str.substr(str.length() - 5, 2);

Even More Differences

● In Java, you can concatenate just about
anything with a string.

● In C++, you can only concatenate strings
and characters onto other strings.

● We provide a library "strlib.h" to make
this easier.

string s = "I like " +
 integerToString(137);

And the Biggest Difference

● In C++, there are two types of strings:
● C-style strings, inherited from the C programming

language, and
● C++ strings, a library implemented in C++.

● Any string literal is a C-style string.
● Almost none of the operations we've just

described work on C-style strings.
● Takeaway point: Be careful with string literals

in C++.
● Use the string type whenever possible.

string s = "Nubian " + "ibex";

string s = "Nubian " + "ibex";

Each of these strings is a C-style
string, and C-style strings cannot

be added with +. This code
doesn't compile.

Each of these strings is a C-style
string, and C-style strings cannot

be added with +. This code
doesn't compile.

string s = "Nubian " + "ibex";

string s = string("Nubian ") + "ibex";

string s = string("Nubian ") + "ibex";

Now that we explicitly add a cast from a
C-style string to a C++-style string, this code

is legal. If you need to perform
concatenations like this ones, make sure to cast
at least one of the string literals to a C++

string.

Now that we explicitly add a cast from a
C-style string to a C++-style string, this code

is legal. If you need to perform
concatenations like this ones, make sure to cast
at least one of the string literals to a C++

string.

Recursion and Strings

Thinking Recursively

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

Thinking Recursively

1 2 5 8

1 2 5 8

Thinking Recursively

I B E X

I B E X

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &DR

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

& D

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

& D

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

D

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Thinking Recursively

R &DlettersIn(" ") = &D + lettersIn(" ") R

&DlettersIn(" ") = D lettersIn(" ")

DlettersIn(" ") = + lettersIn("")D

lettersIn("") = ""

Palindromes

● A palindrome is a string whose letters
are the same forwards and backwards.

● For example:
● Go hang a salami! I'm a lasagna hog.
● Mr. Owl ate my metal worm.
● Anne, I vote more cars race Rome to Vienna.

Thinking Recursively

r a c e c a r

a c e c a

c e c

e

"

"

"

" "

"

"

"

Thinking Recursively

p o p p o p

o p p o

p p

"

"

" "

"

"

Thinking Recursively

p o p p o p

o p p o

p p

"

"

" "

"

"

" "

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	After this slide, do a quick char-by-char printing example.
	Now do "remove punctuation and spaces"
	Do "convertToUpperCase"
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

