

Thinking Recursively

An Interesting Peruse

WSJ: “Best and Worst Jobs of 2012”

http://online.wsj.com/article/SB10001424052702303772904577336230132805276.html

#1 Job: Software Engineer

http://online.wsj.com/article/SB10001424052702303772904577336230132805276.html

Thinking Recursively, Part II

Recursive Problem-Solving

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

Parking Randomly

0 5Car has
length one

Parking Randomly

0 5

Parking Randomly

0 5

Parking Randomly

0 5

Parking Randomly

0 5x + 1x

Parking Randomly

0 5x + 1x

Parking Randomly

0 5x + 1x

Place cars randomly in these ranges!

Parking Randomly

int parkRandomly(double low, double high) {

 if (high - low < 1.0) {

 return 0;

 } else {

 double x = randomReal(low, high - 1.0);

 return 1 + parkRandomly(low, x) +
 return 1 + parkRandomly(x + 1, high);

 }

}

So What?

● The beauty of our algorithm is the
following recursive insight:

Split an area into smaller,
independent pieces and solve each

piece separately.
● Many problems can be solved this way.

Generating Mondrian Paintings

Fig. 11: Three real Mondrian paintings, and three samples from our
targeting function. Can you tell which is which?

Source: Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun,
“Metropolis Procedural Modeling,” ACM Transactions on Graphics, April 2011.

Slides by Eric Roberts

Slides by Eric Roberts

Generating Mondrians

The CS106B Graphics Library

initGraphics(width, height)
Creates a graphics window with the specified dimensions.

drawLine(x0, y0, x1, y1)
Draws a line connecting the points (x0, y0) and (x1, y1).

drawPolarLine(x0, y0, r, theta)
Draws a line r pixels long in direction theta from (x0, y0). To make chaining line
segments easier, this function returns the ending coordinates as a GPoint.

getWindowWidth()
Returns the width of the graphics window.

getWindowHeight()
Returns the height of the graphics window.

Many more functions exist in the graphics.h interface, which is
described on the web site.

Slides by Eric Roberts

Drawing Rectangles
drawRect(x, y, width, height)

Draws the outline of a rectangle with the specified bounds.

fillRect(x, y, width, height)
Fills the outline of the specified rectangle using the current color.

setColor(color)
Sets the pen color to the specified color string (such as "BLACK" or "RED")

setColor("#rrggbb")
Sets the red/green/blue components to the specified hexadecimal values.

Slides by Eric Roberts

Slides by Eric Roberts

Once More with Color

A fractal image is an image that is defined
in terms of smaller versions of itself.

Fractal Trees

● We can generate a
fractal tree as
follows:
● Grow in some

direction for a
period of time.

● Then, split and
grow two smaller
trees outward at
some angle.

More Trees

● What if we change the amount of branching?

● What if we make the lines thicker?

● What if we allow the tree to keep growing after
it branches?

● Stanford Dryad program uses a combination of
recursion, machine learning, and human
feedback to design aesthetically pleasing trees.
● Check it out at http://dryad.stanford.edu/

http://dryad.stanford.edu/

Exhaustive Recursion

Generating All Possibilities

● Commonly, you will need to generate all
objects matching some criteria.
● Word Ladders: Generate all words that differ

by exactly one letter.

● Often, structures can be generated
iteratively.

● In many cases, however, it is best to
think about generating all options
recursively.

Subsets

● Given a set S, a subset of S is a set T
composed of elements of S.

● Examples:
● {0, 1, 2} ⊆ {0, 1, 2, 3, 4, 5}
● {dikdik, ibex} ⊆ {dikdik, ibex}
● { A, G, C, T } ⊆ { A, B, C, D, E, …, Z }
● { } ⊆ {a, b, c}
● { } ⊆ { }

Generating Subsets

● Many important problems in computer
science can be solved by listing all the
subsets of a set S and finding the “best” one
out of every option.

● Example:
● You have a collection of sensors on an

autonomous vehicle, each of which has data
coming in.

● Which subset of the sensors do you choose to
listen to, given that each takes a different
amount of time to read?

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

● The only subset of an empty set is the
empty set itself.

● Otherwise:
● Fix some element x of the set.
● Generate all subsets of the set formed by

removing x from the main set.
● These subsets are subsets of the original set.
● All of the sets formed by adding x into those

subsets are subsets of the original set.

Tracing the Recursion

Tracing the Recursion

{ A, H, I }

Tracing the Recursion

{ A, H, I }

{ H, I }

Tracing the Recursion

{ A, H, I }

{ H, I }

{ I }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

{I}, { }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

{I}, { }

{H, I}, {H}, {I}, { }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{A, H, I}, {A, H}, {A, I}, {A}
{H, I}, {H}, {I}, { }

{ }

{I}, { }

{H, I}, {H}, {I}, { }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Generating Mondrian-Style Paintings
	Slide 15
	Methods in the Graphics Library
	Exercise: A Better Mondrian Program
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

