
  

Linked Lists



  

Apply to Section Lead!

http://cs198.stanford.edu

http://cs198.stanford.edu/


  

Array-Based Allocation

● Our current implementation of Vector 
and Stack use dynamically-allocated 
arrays.

● To append an element:
● If there is free space, put the element into 

that space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3



  

Array-Based Allocation

● Our current implementation of Vector 
and Stack use dynamically-allocated 
arrays.

● To append an element:
● If there is free space, put the element into 

that space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4



  

Array-Based Allocation

● Our current implementation of Vector 
and Stack use dynamically-allocated 
arrays.

● To append an element:
● If there is free space, put the element into 

that space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 41 2 3 4



  

Array-Based Allocation

● Our current implementation of Vector 
and Stack use dynamically-allocated 
arrays.

● To append an element:
● If there is free space, put the element into 

that space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 41 2 3 4 5



  

Array-Based Allocation

● Our current implementation of Vector 
and Stack use dynamically-allocated 
arrays.

● To append an element:
● If there is free space, put the element into 

that space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 41 2 3 4 5 6



  

A Different Idea

● Instead of reallocating a huge array to 
get the space we need, why not just get a 
tiny amount of extra space for the next 
element?

● Taking notes – when you run out of space 
on a page, you just get a new page.  You 
don't copy your entire set of notes onto a 
longer sheet of paper!



  

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7



  

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7

137



  

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7 7

137



  

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 6 7

137



  

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 5 6 7

137



  

Excuse Me, Coming Through...

1 2 3 41 2 3 4 4 5 6 7

137



  

Excuse Me, Coming Through...

1 2 3 41 2 3 3 4 5 6 7

137



  

Excuse Me, Coming Through...

1 2 3 41 2 2 3 4 5 6 7

137



  

Excuse Me, Coming Through...

1 2 3 41 1 2 3 4 5 6 7

137



  

Excuse Me, Coming Through...

1 2 3 4137 1 2 3 4 5 6 7



  

Shoving Things Over

● Right now, inserting an element into a 
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7



  

Shoving Things Over

● Right now, inserting an element into a 
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137



  

Shoving Things Over

● Right now, inserting an element into a 
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137



  

Shoving Things Over

● Right now, inserting an element into a 
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4137



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 3 4137



  

Linked Lists at a Glance

● Can efficiently splice new elements into 
the list or remove existing elements 
anywhere in the list.

● Never have to do a massive copy step; 
worst-case insertion is efficient.

● Has some tradeoffs; we'll see this later.



  

Building our Vocabulary

● In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers



  

Building our Vocabulary

In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures

Dynamic allocation

Null pointers



  

Structures

● In C++, a structure is a type consisting 
of several individual variables all bundled 
together.

● To create a structure, we must
● Define what fields are in the structure, then
● Create a variable of the appropriate type.

● Similar to using classes – need to define 
and implement the class before we can 
use it.



  

Defining Structures

● You can define a structure by using the 
struct keyword:

  struct TypeName {

    /* … field declarations … */

  };

● For those of you with a C background: in 
C++, “typedef struct” is not necessary.



  

A Simple Structure

struct Tribute {
    string name;
    int districtNumber;
};

Tribute t;
t.name = "Katniss Everdeen";
t.districtNumber = 12;



  

A Simple Structure

struct Tribute {
    string name;
    int districtNumber;
};

Tribute t;
t.name = "Katniss Everdeen";
t.districtNumber = 12;



  

A Simple Structure

struct Tribute {
    string name;
    int districtNumber;
};

Tribute t;
t.name = "Katniss Everdeen";
t.districtNumber = 12;



  

structs and classes

● In C++, a class is a pair of an interface 
and an implementation.
● Interface controls how the class is to be 

used.
● Implementation specifies how it works.

● A struct is a stripped-down version of a 
class:
● Purely implementation, no interface.
● Primarily used to bundle information 

together when no interface is needed.



  

Building our Vocabulary

● In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers



  

Building our Vocabulary

In order to use linked lists, we will need 
to introduce or revisit several new 
language features:

Structures
● Dynamic allocation

Null pointers



  

Dynamic Memory Allocation

● We have seen the new keyword used to 
allocate arrays, but it can also be used to 
allocate single objects.

● The syntax

new T(args)

creates a new object of type T passing 
the appropriate arguments to the 
constructor, then returns a pointer to it.



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

ptr

?



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

ptr

?

poof!



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

ptr



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

ptr



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

ptr
137



  

Cleaning Up

● As with dynamic arrays, you are responsible for 
cleaning up memory allocated with new.

● You can deallocate memory with the delete 
keyword:

delete ptr;

● This destroys the object pointed at by the given 
pointer, not the pointer itself.

ptr
137



  

Cleaning Up

● As with dynamic arrays, you are responsible for 
cleaning up memory allocated with new.

● You can deallocate memory with the delete 
keyword:

delete ptr;

● This destroys the object pointed at by the given 
pointer, not the pointer itself.

ptr
137



  

Cleaning Up

● As with dynamic arrays, you are responsible for 
cleaning up memory allocated with new.

● You can deallocate memory with the delete 
keyword:

delete ptr;

● This destroys the object pointed at by the given 
pointer, not the pointer itself.

ptr

???



  

Unfortunately...

● In C++, all of the following result in 
undefined behavior:
● Deleting an object with delete[] that was 

allocated with new.
● Deleting an object with delete that was 

allocated with new[].

● Although it is not always an error, it is 
usually a Very Bad Idea to treat an array 
like a single object or vice-versa.



  

Pointers and Structures



  

A Tale of Dots and Stars

● If we have a pointer to a structure, like this one:

Tribute* ptr = new Tribute; 

● We cannot access the fields by using dot, since ptr is 
not an actual Tribute.

● The following doesn't work either:

*ptr.districtNumber = 13;

because it's interpreted as

*(ptr.districtNumber) = 13

and not

(*ptr).districtNumber = 13;



  

Arrow to the Rescue

● To access a field in a structure or class 
through a pointer, you can write

(*ptr).districtNumber = 13;

● However, it's much easier to use the 
arrow operator (->)

ptr->districtNumber = 13;

● The arrow operator is so convenient that 
we almost always use it instead of using 
the parenthesis/star.



  

Building our Vocabulary

● In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers



  

Building our Vocabulary

In order to use linked lists, we will need 
to introduce or revisit several new 
language features:

Structures

Dynamic allocation
● Null pointers



  

A Pointless Exercise

● When working with pointers, we 
sometimes wish to indicate that a pointer 
is not pointing to anything.

● In C++, you can set a pointer to NULL to 
indicate that it is not pointing to an 
object:

ptr = NULL; 

● This is not the default value for pointers; 
by default, pointers point to arbitrary 
locations in memory.



  

Building our Vocabulary

● In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers



  

Building our Vocabulary

In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers



  

And now... linked lists!



  

Linked List Cells

● A linked list is a chain of cells.
● Each cell contains two pieces of 

information:
● Some piece of data that is stored in the 

sequence, and
● A link to the next cell in the list.

● We can traverse the list by starting at the 
first cell and repeatedly following its link.



  

Representing a Cell

● For simplicity, let's assume we're building a 
linked list of strings.

● We can represent a cell in the linked list as a 
structure:

        struct Cell {

            string value;

            Cell* next;

        };

● The structure is defined recursively!



  

Building Linked Lists



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3

ptr



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3

ptr



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3

ptr



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3

ptr



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3

ptr



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3

ptr



  

Once More With Recursion

● Linked lists are defined recursively, and 
we can traverse them using recursion!

void recursiveTraverse(Cell* list) {

    if (list == NULL) return;

    /* … do something with list … */

    recursiveTraverse(list->next);

}


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

