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Array-Based Allocation

● Our current implementation of Vector 
and Stack use dynamically-allocated 
arrays.

● To append an element:
● If there is free space, put the element into 

that space.
● Otherwise, get a huge new array and move 

everything over.
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A Different Idea

● Instead of reallocating a huge array to 
get the space we need, why not just get a 
tiny amount of extra space for the next 
element?

● Taking notes – when you run out of space 
on a page, you just get a new page.  You 
don't copy your entire set of notes onto a 
longer sheet of paper!



  

Excuse Me, Coming Through...
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Shoving Things Over

● Right now, inserting an element into a 
middle of a Vector can be very costly.

● Couldn't we just do something like this?
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Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 2 3 4137



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.

1 3 4137



  

Linked Lists at a Glance

● Can efficiently splice new elements into 
the list or remove existing elements 
anywhere in the list.

● Never have to do a massive copy step; 
worst-case insertion is efficient.

● Has some tradeoffs; we'll see this later.



  

Building our Vocabulary

● In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers
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Structures

● In C++, a structure is a type consisting 
of several individual variables all bundled 
together.

● To create a structure, we must
● Define what fields are in the structure, then
● Create a variable of the appropriate type.

● Similar to using classes – need to define 
and implement the class before we can 
use it.



  

Defining Structures

● You can define a structure by using the 
struct keyword:

  struct TypeName {

    /* … field declarations … */

  };

● For those of you with a C background: in 
C++, “typedef struct” is not necessary.



  

A Simple Structure

struct Tribute {
    string name;
    int districtNumber;
};

Tribute t;
t.name = "Katniss Everdeen";
t.districtNumber = 12;
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structs and classes

● In C++, a class is a pair of an interface 
and an implementation.
● Interface controls how the class is to be 

used.
● Implementation specifies how it works.

● A struct is a stripped-down version of a 
class:
● Purely implementation, no interface.
● Primarily used to bundle information 

together when no interface is needed.
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Dynamic Memory Allocation

● We have seen the new keyword used to 
allocate arrays, but it can also be used to 
allocate single objects.

● The syntax

new T(args)

creates a new object of type T passing 
the appropriate arguments to the 
constructor, then returns a pointer to it.



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;
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Cleaning Up

● As with dynamic arrays, you are responsible for 
cleaning up memory allocated with new.

● You can deallocate memory with the delete 
keyword:

delete ptr;

● This destroys the object pointed at by the given 
pointer, not the pointer itself.

ptr
137
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Cleaning Up

● As with dynamic arrays, you are responsible for 
cleaning up memory allocated with new.

● You can deallocate memory with the delete 
keyword:

delete ptr;
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pointer, not the pointer itself.
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Unfortunately...

● In C++, all of the following result in 
undefined behavior:
● Deleting an object with delete[] that was 

allocated with new.
● Deleting an object with delete that was 

allocated with new[].

● Although it is not always an error, it is 
usually a Very Bad Idea to treat an array 
like a single object or vice-versa.



  

Pointers and Structures



  

A Tale of Dots and Stars

● If we have a pointer to a structure, like this one:

Tribute* ptr = new Tribute; 

● We cannot access the fields by using dot, since ptr is 
not an actual Tribute.

● The following doesn't work either:

*ptr.districtNumber = 13;

because it's interpreted as

*(ptr.districtNumber) = 13

and not

(*ptr).districtNumber = 13;



  

Arrow to the Rescue

● To access a field in a structure or class 
through a pointer, you can write

(*ptr).districtNumber = 13;

● However, it's much easier to use the 
arrow operator (->)

ptr->districtNumber = 13;

● The arrow operator is so convenient that 
we almost always use it instead of using 
the parenthesis/star.



  

Building our Vocabulary

● In order to use linked lists, we will need 
to introduce or revisit several new 
language features:
● Structures
● Dynamic allocation
● Null pointers



  

Building our Vocabulary

In order to use linked lists, we will need 
to introduce or revisit several new 
language features:

Structures

Dynamic allocation
● Null pointers



  

A Pointless Exercise

● When working with pointers, we 
sometimes wish to indicate that a pointer 
is not pointing to anything.

● In C++, you can set a pointer to NULL to 
indicate that it is not pointing to an 
object:

ptr = NULL; 

● This is not the default value for pointers; 
by default, pointers point to arbitrary 
locations in memory.
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And now... linked lists!



  

Linked List Cells

● A linked list is a chain of cells.
● Each cell contains two pieces of 

information:
● Some piece of data that is stored in the 

sequence, and
● A link to the next cell in the list.

● We can traverse the list by starting at the 
first cell and repeatedly following its link.



  

Representing a Cell

● For simplicity, let's assume we're building a 
linked list of strings.

● We can represent a cell in the linked list as a 
structure:

        struct Cell {

            string value;

            Cell* next;

        };

● The structure is defined recursively!



  

Building Linked Lists



  

Traversing a Linked List

● Once we have a linked list, we can 
traverse it by following the links one at a 
time.
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {

    /* … use ptr … */

}

1 2 4list 3
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Once More With Recursion

● Linked lists are defined recursively, and 
we can traverse them using recursion!

void recursiveTraverse(Cell* list) {

    if (list == NULL) return;

    /* … do something with list … */

    recursiveTraverse(list->next);

}
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