

Advanced Data
Structures

2

30-2 6

-1 4

22

30-2 6

-1 4

30-2 6

-1 4

4

22

30-2 6

-1 4

30-2 6

-1

4

3

4

22

30-2 6

-1

0-2 6

-1

3

4

3

4

22

0-2 6

-1

0-2 6

-1

2

3

4

3

4

2

0-2 6

-1

0-2 6

-1

2

-1

2

3

4

3

4

0-2 6

-1

0-2 6

-1

-2

2

-1

2

3

4

3

4

0-2 60 6

-2

-1

-2

2

-1

2

3

4

3

4

0 60 6

Insertion Order Matters

● Suppose we create a BST of numbers in
this order:

4, 2, 1, 3, 6, 5, 7

4

2

1 3

6

5 7

Insertion Order Matters

● Suppose we create a BST of numbers in
this order:

1, 2, 3, 4, 5, 6, 7

1
2

3
4

5
6

7

Tree Terminology

● The height of a tree is the number of
nodes in the longest path from the root
to a leaf.

4

2

1 3

6

5 7

Tree Terminology

● The height of a tree is the number of
nodes in the longest path from the root
to a leaf.

1
2

3
4

5
6

7

Keeping the Height Low

● Almost all BST operations have time
complexity based on height:
● Insertion: O(h)
● Search: O(h)
● Deletion: O(h)

● Keeping the height low will make these
operations much more efficient.

● How do we do this?

Tree Rotations

● One common way of keeping tree heights
low is to reshape the BST when it gets
too high.

● One way to accomplish this is a tree
rotation, which locally rearranges
nodes.

Tree Rotations

B

A

>B

<A
>A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Let's Code it Up!

When to Rotate?

● The actual code for rotations is not too
complex.

● Deciding when and where to rotate the tree, on
the other hand, is a bit involved.

● There are many schemes we can use to
determine this:
● AVL trees maintain balance information in each

node, then rotate when the balance is off.
● Red/Black trees assign each node a color, then

rotate when certain color combinations occur.

An Interesting Observation

Random Binary Search Trees

● If we build a binary search tree with totally
random values, the resulting tree is (with high
probability) within a constant factor of
balanced.
● Approximately 4.3 ln n

● Moreover, the average depth of a given node is
often very low.
● Approximately 2 ln n.

● If we structure the BST as if it were a random
tree, we get (with high probability) a very good
data structure!

Treaps

● A treap is a data structure that combines a binary
search tree and a binary heap.

● Each node stores two pieces of information:
● The piece of information that we actually want to

store, and
● A random real number.

● The tree is stored such that
● The nodes are a binary search tree when looking up

the information, and
● The nodes are a binary heap with respect to the

random real number.

Ibex

Dikdik

Cat

Sloth

Dog Puppy

Kitty

314

106

4 42

137

178

271

Treaps are Wonderful

● With very high probability, the height of
an n-node treap is O(log n).

● Insertion is surprisingly simple once we
have code for tree rotations.

● Deletion is straightforward once we have
code for tree rotations.

Inserting into a Treap

● Insertion into a treap is a combination of
normal BST insertion and heap insertion.

● First, insert the node doing a normal BST
insertion. This places the value into the
right place.

● Next, bubble the node upward in the tree
by rotating it with its parent until its
value is smaller than its parent.

Ibex

Dikdik

Cat

Sloth

Dog Puppy

314

106

4 42 178

271

Ibex

Dikdik

Cat

Sloth

Dog Puppy

Kitty

314

106

4 42

571

178

271

Ibex

Dikdik

Cat

Sloth

Dog

Puppy

Kitty

314

106

4 42 571

178

271

Ibex

Dikdik

Cat SlothDog

Puppy

Kitty

314

106

4 42

571

178

271

Ibex

Dikdik

Cat

Sloth

Dog
Puppy

Kitty

314

106

4 42

571

178

271

Let's Code it Up!

Removing from a Treap

● In general, removing a node from a BST is quite
difficult because we have to make sure not to lose
any nodes.

● For example, how do you remove the root of this
tree?

● However, removing leaves is very easy, since they
have no children.

4

2

1 3

6

5 7

Removing from a Treap

● It would seem that, since a treap has
extra structure on top of that of a BST,
that removing from a treap would be
extremely hard.

● However, it's actually quite simple:
● Keep rotating the node to delete with its

larger child until it becomes a leaf.
● Once the node is a leaf, delete it.

Ibex

Dikdik

Cat

Sloth

Dog
Puppy

Kitty

314

106

4 42

571

178

271

Ibex

Dikdik

Cat SlothDog

Puppy

Kitty

314

106

4 42

571

178

271

Ibex

Dikdik

Cat

Sloth

Dog

Puppy

Kitty

314

106

4 42 571

178

271

Ibex

Dikdik

Cat

Sloth

Dog Puppy

Kitty

314

106

4 42

571

178

271

Ibex

Dikdik

Cat

Sloth

Dog Puppy

314

106

4 42 178

271

Summary of Treaps

● Treaps give a (reasonably)
straightforward way to guarantee that
the height of a BST is not too great.

● Insertion into a treap is similar to
insertion into a BST followed by insertion
into a binary heap.

● Deletion from a treap is similar to the
bubble-down step from a heap.

● All operations run in expected O(log n)
time.

A Survey of Other Data Structures

Data Structures so Far

● We have seen many data structures over
the past few weeks:
● Dynamic arrays.
● Linked lists.
● Hash tables.
● Tries.
● Binary search trees (and treaps).
● Binary heaps.

● These are the most-commonly-used data
structures for general data storage.

Specialized Data Structures

● For applications that manipulate specific
types of data, other data structures exist
that make certain operations surprisingly
fast and efficient.

● Many critical applications of computers
would be impossible without these data
structures.

k-d Trees

Suppose that you want to efficiently
store points in k-dimensional space.

How might you organize the
data to efficiently query for

points within a region?

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

Search for (1, 4, 4)

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

Search for (1, 4, 4)

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

Search for (1, 4, 4)

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

Search for (1, 4, 4)

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

Search for (1, 4, 4)

The Intuition

The Intuition

2

-1 4

-2 0 63

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

The Intuition

2

-1 4

-2 0 63

0

Values less than two Values greater than two

The Intuition

2

-1 4

-2 0 63

0

Values less than two Values greater than two

Key Idea: Split Space in Half

Upper half-space

Lower half-space

x < x

0 x ≥ x
0

Nearest-Neighbor Lookup

y = y
0

(x
1
, y

1
)

 (x

2
, y

2
)

 r 1

 r 2

y = y
0

(x
1
, y

1
)

 (x

2
, y

2
)

 r 1

 r 2

y = y
0

(x
1
, y

1
)

 (x

2
, y

2
)

 r 1

 r 2

 |y
1
 - y

0
|

|y
2
 – y

0
|

k-d Trees

● Assuming the points are nicely
distributed, nearest-neighbor searches in
k-d trees can run faster than O(n) time.

● Applications in computational geometry
(collision detection), machine learning
(nearest-neighbor classification), and
many other places.

Suffix Trees

String Processing

● In computational biology, strings are
enormously useful for storing DNA and
RNA.

● Many important questions in biology can
be addressed through string processing:
● What is the most plausible evolutionary

history of the following genomes?
● Are there particular gene sequences that

appear with high frequency within a
genome?

Suffix Trees

● A suffix tree is a (slightly modified) trie
that stores all suffixes of a string S.

● Here is the suffix tree for “dikdik;” the $
is a marker for “end-of-string.”

dik

$ dik$

 ik

$ dik$

k

$ dik$

Suffix Trees

● Important, nontrivial, nonobvious fact: A suffix
tree for a string of n characters can be built in
time O(n).

● Given a string of length m, we can determine
whether it is a substring of the original string in
time O(m).

dik

$ dik$

 ik

$ dik$

k

$ dik$

Suffix Trees

● Other applications of suffix trees:
● Searching for one genome within another

allowing for errors, insertions, and deletions
in time O(n + m).

● Finding the longest common substring of two
sequences in time O(n + m).

● Improving the performance of data
compression routines by finding long
repeated strings efficiently.

Bloom Filters

Distributing Data

● Websites like Google and Facebook deal
with enormous amounts of data.

● Probably measured in hundreds of
millions of gigabytes (hundreds of
petabytes).

● There is absolutely no way to store this
on one computer.

● Instead, data must be stored on multiple
computers networked together.

Looking up Data

● Suppose you are at Google implementing
search.

● When you get a search query, you have to
be able to know which computer knows
what pages to display for that query.

● Network latency is, say, 2ms between
you and each computer.

● If you have one thousand computers to
search, you can't just query each one and
ask.

Bloom Filters

● A Bloom filter is a data structure
similar to a set backed by a hash table.

● Stores a set of values in a way that may
lead to false positives:
● If the Bloom filter says that an object is not

present, it is definitely not present.
● If the Bloom filter says that an object is

present, it may actually not be present.

Bloom Filters

N N N N N N N N N N N N N N

Bloom Filters

N N N N N N N N N N N N N N

Value
One

Bloom Filters

N N N N N N N N N N N N N N

Value
One

Bloom Filters

N N N Y N N Y N Y N N Y N Y

Value
One

Bloom Filters

N N N Y N N Y N Y N N Y N Y

Bloom Filters

N N N Y N N Y N Y N N Y N Y

Value
Two

Bloom Filters

N N N Y N N Y N Y N N Y N Y

Value
Two

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Two

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
One

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
One

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Two

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Two

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Three

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Three

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Four

Bloom Filters

N Y N Y N Y Y N Y N N Y N Y

Value
Four

Bloom Filters and Networks

● Bloom filters can be used to mitigate the
networking problem from earlier.

● Have each computer store a Bloom filter of
what's stored on each other computer.

● To determine which computer has some data:
● Look up that value in each Bloom filter.
● Call up just the computers that might have it.

● Since Bloom filter lookup is substantially faster
than a network query (probably 1000-10,000x),
this solution is used extensively in practice.

Data structures make it possible to
solve important problems at scale.

You get to decide which problems
we'll be using them for.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

