YEAH!

Serafini

Sahil Chopra - 1.19.2016

Adapted from SLs Rishi Bedi & Audrey Ho

Part 1: Word Ladder

Welcome to CS 106B Word Ladder.
Please give me two English words, and I will change the
first into the second by changing one letter at a time.

Dictionary file name? dictionary.txt

Word #1 (or Enter to quit):
Word #2 (or Enter to quit):
A ladder from data back to code:
date cate cade

|
Word #1 (or Enter to quit):

Have a nice day.

Word Ladder: Overview

Input: Given start word & destination word

Output: Create “ladder” of words from start to destination
Goal: Find shortest ladder (fewest number of changes)
Ignore Case

string lower = tolLowerCase (input string);

Word Ladder: BFS (Breadth First Search)

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors

{the} {} {}

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors

{} {the} {tie, she, tee}

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors
{the, tie} {3 {}
{the, she} { {}

{the, tee} {} {}

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors
{the, she} {the, tie} {lie, tin, the}

{the, tee}

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors
{the, she} {} {}
{the, tee}
{the, tie, lie}

{the, tie, tin}

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors
{the, tee} {the, she} {the, see, shy}

{the, tie, lie}

{the, tie, tin}

Word Ladder: BFS (Breadth First Search)

The Shy
Queue of Paths Current Path Neighbors
{the, tee}
{the, tie, lie}
{the, tie, tin}

{the, she, see}

{the, she, shy} <« DONE.

Word Ladder - BFS: Algorithm

Finding a word ladder between words wl and w2:
Create an empty queue of stacks.
Create/add a stack containing {wl} to the queue.
While the queue is not empty:
Dequeue the partial-ladder stack from the front of the queue.
For each valid English word that is a "neighbor" (differs by 1 letter)
of the word on top of the stack:
If that neighbor word has not already been used in a ladder before:
If the neighbor word is w2:
Hooray! we have found a solution.
Otherwise:
Create a copy of the current partial-ladder stack.
Put the neighbor word on top of the copy stack.
Add the copy stack to the end of the queue.

Word Ladder: Error Checking

e Input Word Restrictions:
o 2 Valid English Words
o 2 Different Words
o Same Length
e Error Examples:
o Invalid Words: bygh -> asdf
o Different Words: code -> code
o Different Length: this -> things

Part 2: N-Grams!

e Input: File & Number (*"N” of “N-Grams”)

e OQOutput: “Randomly Generated” Sequence of Words
e Note: N = Size of Chunks “N-Gram”

Welcome to CS 106B Random Writer ('N-Grams').

This program makes random text based on a document.
Give me an input file and an 'N' value for groups
of words, and I'll create random text for you.

Input file name? hamlet.txt
Value of N? 3

of random words to generate (@ to quit)? 40

. chapel. Ham. Do not believe his tenders, as you
go to this fellow. Whose grave's this, sirrah?
Clown. Mine, sir. [Sings] 0, a pit of clay for to
the King that's dead. Mar. Thou art a scholar; speak
to it. ...

of random words to generate (@ to quit)? 20

. a foul disease, To keep itself from noyance; but
much more handsome than fine. One speech in't I
chiefly lov'd. ...

of random words to generate (@ to quit)? @
Exiting.

N-Grams!: Reading Algorithm in Action

=3

|Z

ile: “to be or not to be that is the question.” Map: {}

Window: {}

Next Word: “”

Create window of first N-1 words

N-Grams!: Reading Algorithm in Action

=3

|Z

File: “to be or not be that is the question.” Maps: {}
Windows: {“t0”, “be”}

Next Word: “or”

Add to map

N-Grams!: Reading Algorithm in Action

=3

|Z

File: “to be or not to be that is the question” Map: {{*to”, “be”} = {"or"}}
Window: {"be”, “or’}

Next Word: “not”

Slide window over

N-Grams!: Reading Algorithm in Action

3

|Z

File: “to be or not to be that is the question” Map: {{*to”, “be”} => {"or”, “that”}

Window: {is”, “the”} {“be”, “or"} => {*not"}

Next Word: “question.” {{or”, “not”} => {*t0”}
{*not”, “t0”} => {*be”}
{*be”, “that™} => {"is”}
{“that”, “is”} => {“the”}

{“is”, “the™} => {"question.”}}

N-Grams!: Reading Algorithm

What is our map of?

Read file word by word

Read first N-1 words and create a window with them

Store both window and word that follows

Slide the window across word by word throughout the rest of the file

If you come across a window that is already a key in the map, add this next
word to the list of next words

N-Grams!: Writing Algorithm

e From the user: # of words to generate =>
e Pick a random starting point: a random key from your map:

Vector<key type> keys = map.keys();

Get a random suffix for this randomly chosen prefix

Get the collection of possible suffixes from the map

Choose a random number to use as index

Slide current window over to get the new prefix (adding in the suffix you just
randomly selected)

e Repeat until you’'ve outputted however many words they asked for

