
YEAH!
Serafini

Sahil Chopra - 1.19.2016
Adapted from SLs Rishi Bedi & Audrey Ho

Part 1: Word Ladder

Word Ladder: Overview

● Input: Given start word & destination word
● Output: Create “ladder” of words from start to destination
● Goal: Find shortest ladder (fewest number of changes)
● Ignore Case

string lower = toLowerCase(input_string);

Word Ladder: BFS (Breadth First Search)

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{the} {} {}

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{} {the} {tie, she, tee}

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{the, tie} {} {}

{the, she} {} {}

{the, tee} {} {}

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{the, she} {the, tie} {lie, tin, the}

{the, tee}

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{the, she} {} {}

{the, tee}

{the, tie, lie}

{the, tie, tin}

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{the, tee} {the, she} {the, see, shy}

{the, tie, lie}

{the, tie, tin}

Word Ladder: BFS (Breadth First Search)
The Shy

Queue of Paths Current Path Neighbors

{the, tee}

{the, tie, lie}

{the, tie, tin}

{the, she, see}

{the, she, shy} ← DONE.

Word Ladder - BFS: Algorithm
Finding a word ladder between words w1 and w2:

Create an empty queue of stacks.

 Create/add a stack containing {w1} to the queue.

 While the queue is not empty:

Dequeue the partial-ladder stack from the front of the queue.

For each valid English word that is a "neighbor" (differs by 1 letter)

of the word on top of the stack:

If that neighbor word has not already been used in a ladder before:

If the neighbor word is w2:

Hooray! we have found a solution.

Otherwise:

Create a copy of the current partial-ladder stack.

Put the neighbor word on top of the copy stack.

Add the copy stack to the end of the queue.

Word Ladder: Error Checking
● Input Word Restrictions:

○ 2 Valid English Words
○ 2 Different Words
○ Same Length

● Error Examples:
○ Invalid Words: bygh -> asdf
○ Different Words: code -> code
○ Different Length: this -> things

Part 2: N-Grams!
● Input: File & Number (“N” of “N-Grams”)
● Output: “Randomly Generated” Sequence of Words
● Note: N = Size of Chunks “N-Gram”

N-Grams!: Reading Algorithm in Action
N: 3

File: “to be or not to be that is the question.” Map: {}

Window: {}

Next Word: “”

Create window of first N-1 words

N-Grams!: Reading Algorithm in Action
N: 3

File: “to be or not be that is the question.” Maps: {}

Windows: {“to”, “be”}

Next Word: “or”

Add to map

N-Grams!: Reading Algorithm in Action
N: 3

File: “to be or not to be that is the question” Map: {{“to”, “be”} ⇒ {“or”}}

Window: {“be”, “or”}

Next Word: “not”

Slide window over

N-Grams!: Reading Algorithm in Action
N: 3

File: “to be or not to be that is the question” Map: {{“to”, “be”} => {“or”, “that”}

Window: {“is”, “the”} {“be”, “or”} => {“not”}

Next Word: “question.” {{“or”, “not”} => {“to”}

{“not”, “to”} => {“be”}

{“be”, “that”} => {“is”}

{“that”, “is”} => {“the”}

{“is”, “the”} => {“question.”}}

N-Grams!: Reading Algorithm
● What is our map of?
● Read file word by word
● Read first N-1 words and create a window with them
● Store both window and word that follows
● Slide the window across word by word throughout the rest of the file
● If you come across a window that is already a key in the map, add this next

word to the list of next words

N-Grams!: Writing Algorithm
● From the user: # of words to generate =>
● Pick a random starting point: a random key from your map:

Vector<key_type> keys = map.keys();

● Get a random suffix for this randomly chosen prefix
● Get the collection of possible suffixes from the map
● Choose a random number to use as index
● Slide current window over to get the new prefix (adding in the suffix you just

randomly selected)
● Repeat until you’ve outputted however many words they asked for

