
YEAH!
Trailblazer

Sahil Chopra - 3.03.2016
Adapted from SLs Brendon Go & Rishi Bedi

Graph Algorithms
● Depth First Search - Find a Path
● Breadth First Search - Finds the Shortest Path
● Dijkstra’s Algorithm - Finds Path of Least Cost
● A* Search - Finds Path of Least Cost w/ Heuristics → Speed Boost
● Kruskals Algorithm - Construct Minimum Spanning Trees

Depth First Search (DFS) - Recursive
function dfs(v1, v2){

dfs(v1, v2, emptyPath)
}

function dfs(v1, v2, path) {
add v1 to path and mark as visited
if v1 == v2

return true // we found a path
for each unvisited neighbor n of v {

if dfs(n, v2, path) finds a path
we are done

}
remove v1 from path

}

Breadth First Search (BFS) - Iterative
function bfs(v1, v2) {

enqueue(v1)
mark v1 as visited
while (q is not empty){

dequeue vertex v from q
if v1 == v2

yay!
for each unvisited neighbor n of v {

mark n as visited and add it to q
}

}
}

Dikstra’s Algorithm - Iterative
function dijkstras(v1, v2){

initialize every node to have cost ∞
set v1’s cost to 0
enqueue v1 with priority 0
while (pq is not empty) {

v = dequeue most urgent element
mark v as visited
if v == v2, stop
foreach unvisited neighbor n of v {

cost = v’s cost + weight of edge from n to v
if cost < n’s cost

set n’s cost to cost and n’s previous pointer to v
if n is in pq

update its priority to be cost
else

enqueue n with priority = cost
}

}
}
Follow previous pointers to reconstruct path

A* - Variant of Djikstra’s
function dijkstras(v1, v2){

initialize every node to have cost ∞
set v1’s cost to 0
enqueue v1 with priority heuristic(v1, v2)
while (pq is not empty) {

v = dequeue most urgent element
mark v as visited
if v == v2, stop
foreach unvisited neighbor n of v {

cost = v’s cost + weight of edge from n to v + heuristic(v, v2)
if cost < n’s cost

set n’s cost to cost and n’s previous pointer to v
if n is in pq

update its priority to be cost
else

enqueue n with priority = cost
}

}
}
Follow previous pointers to reconstruct path

Kruskal’s
function kruskals(graph){

put all nodes into their own cluster
create a PQ of the edges order by their cost
while pq is not empty {

remove the edge
if edge’s endpts are not in the same cluster {

choose this edge
merge the two clusters

}
}

}

Relevant Code
graph.resetData()

graph.getEdge(v1,v2)

for(Vertex* neighbor: graph.getNeighbors(vertex))

for(Vertex* vertex : graph.getVertexSet())

for(Edge* edge: graph.getEdgeSet())

heuristicFunction(from, to)

Relevant Code
Vertex* vertex;

vertex->cost

vertex->visited

vertex->setColor(color)

vertex->getColor()

POSITIVE_INFINITY

Edge* edge

edge->cost

FAQ
How can I tell if I did it right?

DFS: finds any path

BFS: finds any path same length as sample

Dijkstras/A*: finds any path with same cost as sample

Kruskals: Maze is connected

