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Announcement: Midterm

Last name A-HAN: Hewlett 200
Last name HAP-MC: Hewlett 201

Last name ME-Z: Braun Auditorium

Concepts: Functions, Collections (Stacks,
Queues, Vector, Grid, Map, Set), Recursion,
Recursive Backtracking

Eg everything up to Monday and in the
assignments you have done.



Midterm Review

A B

More weekend

Sunday morning handouts describing
review what you should know
+ petter practice

exams.
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Today’s Goals

1. Learn how to define a class in C++
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Course Syllabus

" Intro to
Abstractions

C
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Under the HoodJ

RecursionJ

You are here



Some large programs are in C++
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Self Drlvmg Carin C++

_ o '
l . | almost all the code is wrltten in C++. ,WM
- Sebastian Thrun ——




How?






Class examples

e A calendar program might want to store information
about dates, but C++ does not have a Date type.

e A student registration system needs to store info
about students, but C++ has no Student type.

S O 4
e A music synthesizer app might want to store information about
users' accounts, but C++ has no Instrument type.

e However, C++ does provide a feature for us to add
new data types to the language: classes.

— Writing a class defines a new data type.
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Classes

class: A template for a new type of variable.
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Elements of a class

member variables: State inside each object.
— Also called "instance variables" or "fields"
— Declared as private

— Each object created has a copy of each field.

member functions: Behavior that executes inside each object.
— Also called "methods"
— Each object created has a copy of each method.
— The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.
— Sets the initial state of each new object.
— Often accepts parameters for the initial state of the fields.
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Source Interface Divide

Interface Source
name.h name.cpp
Client reads Implementer writes
Shows methods and Implements methods

states instance
variables
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Structure of a .h file

// classname.h
#ifndef classname h

P

#define _classname_h

class declaration;

#tendif

This is protection in case
multiple .cpp files include this .h,
so that its contents won't

get declared twice
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A class declaration

class ClassName { // in ClassName.h
public:
ClassName (parameters) ; // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:

type name; // member variables

type name; // (data inside each object)
}s

\

IMPORTANT: must put a semicolon at end of class declaration (argh)
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Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef _bankaccount_h
#define _bankaccount h

class BankAccount {

public:
string name; // each BankAccount object
double balance; // has a name and balance

s

#tendif
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Using objects

// vl with public fields (bad)

BankAccount bal; bal
bal.name = ”Chris"; name = ”Chris"
bal.balance = 1.25; balance = 1.25
BankAccount ba2; ba2
ba2.name = "Mehran"; ., .
name = "Mehran
ba2.balance = 9999.00; balance = 9999 .00

e Think of an object as a way of grouping multiple variables.
— Each object contains a name and balance field inside it.
— We can get/set them individually.
— Code that uses your objects is called client code.
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What does that look like?



Member func. bodies

e In ClassName . cpp, we write bodies (definitions) for the member
functions that were declared in the . h file:

// ClassName.cpp
#include "ClassName.h"

// member function
returnType ClassName: :methodName (parameters) A

statements,

}

— Member functions/constructors can refer to the object's fields.

e Exercise: Write a withdraw member function to deduct money
from a bank account's balance.
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The implicit parameter

e implicit parameter:
The object on which a member function is called.

— During the call chris.withdraw(...),
the object named chris is the implicit parameter.

— During the call mehran.withdraw(...),
the object named mehran is the implicit parameter.

— The member function can refer to that object's member variables.

e We say that it executes in the context of a particular object.

e The function can refer to the data of the object it was called on.

e [t behaves as if each object has its own copy of the member functions.

28



Member func diagram

// BankAccount.cpp

void BankAccount::withdraw(double amount) {

if (balance >= amount) {
balance -= amount;

}

// client program
BankAccount chris;
BankAccount mehran;

chris.withdraw(5.00);

mehran.withdraw(99.00);

name ”chris™ balance 1.25
void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;
name "mehran” balance 9999

void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;

}
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Initializing objects

¢ |t's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = ”Chris";
ba.balance = 1.25; // tedious

e We'd rather specify the fields' initial values at the start:
BankAccount ba(”’Chris", 1.25); // better

— We are able to this with most types of objects in C++ and Java.
— You can achieve this functionality using a constructor.
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Constructors

ClassName: :ClLassName (parameters) A
statements to initialize the object;

¥

e constructor: Initializes state of new objects as they are created.

— runs when the client declares a new object

— no return type is specified;
it implicitly "returns"” the new object being created

— If a class has no constructor, C++ gives it a default constructor with no
parameters that does nothing.
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Constructor diagram

// BankAccount.cpp

BankAccount: :BankAccount(string n, double b) {

name = n;
balance = b;

// client program
BankAccount bl(
”Chris", 1.25);

BankAccount b2(
"Mehran", 9999);

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

name balance

BankAccount(string n, double b) {
name = n;
balance = b;
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The keyword this

e Asin Java, C++ has a this keyword to refer to the current object.

— Syntax: this->member

— Common usage: In constructor, so parameter names can match the
names of the object's member variables:

BankAccount: :BankAccount(string name,
double balance) {
this->name = name;
this->balance = balance;

this ->
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Preconditions

e precondition: Something your code assumes is true
at the start of its execution.

— Often documented as a comment on the function's header.
— If violated, the class often throws an exception.

// Initializes a BankAccount with the given state.

// Precondition: balance is non-negative

BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {

throw balance;
}

this->name = name;
this->balance = balance;
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Private data

private:
type name;

e encapsulation: Hiding implementation details of an
object from its clients.

— Encapsulation provides abstraction.
e separates external view (behavior) from internal view (state)

— Encapsulation protects the integrity of an object's data.

e A class's data members should be declared private.
— No code outside the class can access or change it.
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Accessor functions

e We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount: :getBalance() {
return balance;

¥

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {
name = newName;

}
— Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;
ba.setName("Cynthia");
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Operator overloading (6.2)

e C++ allows you to overload, or redefine, the behavior of many
common operators in the language:

—unary:+ - ++ -- * & | ~ new delete
— binary:+ - * / % 4= -= *= /= %= & | && || ~
== l= < ><=>==[] -> () ,

e Overuse of operator overloading can lead to confusing code.

— Rule of Thumb: Don't abuse this feature. Don't define an overloaded
operator unless its meaning and behavior are completely obvious.
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Hey future Chris.



This is past Chris.
Tell them about Date!



Date Class

| am always calculating the number of
days until a particular date....
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Date Class

int main() {
Date today(3,2,2016);
Date springBreak(19,3,2016);

cout << "spring break: << springBreak << endl;

cout << "days until spring break: ";
cout << today.daysUntil(springBreak) << endl;

today.incrementDay() ;

cout << "days until spring break: ";
cout << today.daysUntil(springBreak) << endl;

return O;
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“summer's date hath all too short a lease”

-Bill Shakespeare, Sonnet 18



But...



C++ has no Dates ®



Today’s Goals

Motivation

/

45



Today’s Goals

Motivation

/

46



You know what to do
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Challenge



Adventure Game

(OOO Adventure

You are standing at the end of a road before a small brick
building. A small stream flows out of the building and
down a gully to the south. A road runs up a small hill

to the west.

> WEST

You are at the end of a road at the top of a small hill.
You can see a small building in the valley to the east.

> EAST

Outside building.

>
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Adventure Game

(OO Adventure

> IN

You are inside a building, a well house for a large spring.
The exit door is to the south. There is another room to
the north, but the door is barred by a shimmering curtain.
There is a set of keys here.

There is a bottle of water here.

>
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Adventure Game

806

Adventure

> TAKE KEYS
Taken.
>
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Before you go
send one class name to socrative

STUDENT



Email big ideas to
piech@cs.stanford.edu



Today’s Goals

1. Learn how to define a class in C++




