Classes

| g cnis © ‘?‘eo“

/()\v

CS 106B
Lecture 12

Feb 3, 2016

Socrative.com

106BWIN16

STUDENT

Announcement: Midterm

Last name A-HAN: Hewlett 200
Last name HAP-MC: Hewlett 201

Last name ME-Z: Braun Auditorium

Concepts: Functions, Collections (Stacks,
Queues, Vector, Grid, Map, Set), Recursion,
Recursive Backtracking

Eg everything up to Monday and in the
assignments you have done.

Midterm Review

A B

More weekend

Sunday morning handouts describing
review what you should know
+ petter practice

exams.

&3

STUDENT

Q
o0
60
O
0
4+
-
v
=
v
O
-
S
O
-
-
<

Today’s Goals

1. Learn how to define a class in C++

Today’s Goals

Motivation

/

Today’s Goals

Motivation

/

Course Syllabus

" Intro to
Abstractions

C
_ ——

Under the HoodJ

RecursionJ

You are here

Some large programs are in C++

Aﬁxi? !
a!ﬁ‘{)(f@RLDA— L S .
o “ £ e

Self Drlvmg Carin C++

_ o '
l . | almost all the code is wrltten in C++. ,WM
- Sebastian Thrun ——

How?

Class examples

e A calendar program might want to store information
about dates, but C++ does not have a Date type.

e A student registration system needs to store info
about students, but C++ has no Student type.

S O 4
e A music synthesizer app might want to store information about
users' accounts, but C++ has no Instrument type.

e However, C++ does provide a feature for us to add
new data types to the language: classes.

— Writing a class defines a new data type.

15

Classes

class: A template for a new type of variable.

16

Elements of a class

member variables: State inside each object.
— Also called "instance variables" or "fields"
— Declared as private

— Each object created has a copy of each field.

member functions: Behavior that executes inside each object.
— Also called "methods"
— Each object created has a copy of each method.
— The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.
— Sets the initial state of each new object.
— Often accepts parameters for the initial state of the fields.

17

Source Interface Divide

Interface Source
name.h name.cpp
Client reads Implementer writes
Shows methods and Implements methods

states instance
variables

19

Today’s Goals

Motivation

/

20

Today’s Goals

Motivation

/

2

Structure of a .h file

// classname.h
#ifndef classname h

P

#define _classname_h

class declaration;

#tendif

This is protection in case
multiple .cpp files include this .h,
so that its contents won't

get declared twice

22

A class declaration

class ClassName { // in ClassName.h
public:
ClassName (parameters) ; // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:

type name; // member variables

type name; // (data inside each object)
}s

\

IMPORTANT: must put a semicolon at end of class declaration (argh)
23

Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef _bankaccount_h
#define _bankaccount h

class BankAccount {

public:
string name; // each BankAccount object
double balance; // has a name and balance

s

#tendif

24

Using objects

// vl with public fields (bad)

BankAccount bal; bal
bal.name = ”Chris"; name = ”Chris"
bal.balance = 1.25; balance = 1.25
BankAccount ba2; ba2
ba2.name = "Mehran"; ., .
name = "Mehran
ba2.balance = 9999.00; balance = 9999 .00

e Think of an object as a way of grouping multiple variables.
— Each object contains a name and balance field inside it.
— We can get/set them individually.
— Code that uses your objects is called client code.

25

What does that look like?

Member func. bodies

e In ClassName . cpp, we write bodies (definitions) for the member
functions that were declared in the . h file:

// ClassName.cpp
#include "ClassName.h"

// member function
returnType ClassName: :methodName (parameters) A

statements,

}

— Member functions/constructors can refer to the object's fields.

e Exercise: Write a withdraw member function to deduct money
from a bank account's balance.

27

The implicit parameter

e implicit parameter:
The object on which a member function is called.

— During the call chris.withdraw(...),
the object named chris is the implicit parameter.

— During the call mehran.withdraw(...),
the object named mehran is the implicit parameter.

— The member function can refer to that object's member variables.

e We say that it executes in the context of a particular object.

e The function can refer to the data of the object it was called on.

e [t behaves as if each object has its own copy of the member functions.

28

Member func diagram

// BankAccount.cpp

void BankAccount::withdraw(double amount) {

if (balance >= amount) {
balance -= amount;

}

// client program
BankAccount chris;
BankAccount mehran;

chris.withdraw(5.00);

mehran.withdraw(99.00);

name ”chris™ balance 1.25
void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;
name "mehran” balance 9999

void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;

}

29

Initializing objects

¢ |t's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = ”Chris";
ba.balance = 1.25; // tedious

e We'd rather specify the fields' initial values at the start:
BankAccount ba(”’Chris", 1.25); // better

— We are able to this with most types of objects in C++ and Java.
— You can achieve this functionality using a constructor.

30

Constructors

ClassName: :ClLassName (parameters) A
statements to initialize the object;

¥

e constructor: Initializes state of new objects as they are created.

— runs when the client declares a new object

— no return type is specified;
it implicitly "returns"” the new object being created

— If a class has no constructor, C++ gives it a default constructor with no
parameters that does nothing.

31

Constructor diagram

// BankAccount.cpp

BankAccount: :BankAccount(string n, double b) {

name = n;
balance = b;

// client program
BankAccount bl(
”Chris", 1.25);

BankAccount b2(
"Mehran", 9999);

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

32

The keyword this

e Asin Java, C++ has a this keyword to refer to the current object.

— Syntax: this->member

— Common usage: In constructor, so parameter names can match the
names of the object's member variables:

BankAccount: :BankAccount(string name,
double balance) {
this->name = name;
this->balance = balance;

this ->

33

Preconditions

e precondition: Something your code assumes is true
at the start of its execution.

— Often documented as a comment on the function's header.
— If violated, the class often throws an exception.

// Initializes a BankAccount with the given state.

// Precondition: balance is non-negative

BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {

throw balance;
}

this->name = name;
this->balance = balance;

34

Private data

private:
type name;

e encapsulation: Hiding implementation details of an
object from its clients.

— Encapsulation provides abstraction.
e separates external view (behavior) from internal view (state)

— Encapsulation protects the integrity of an object's data.

e A class's data members should be declared private.
— No code outside the class can access or change it.

35

Accessor functions

e We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount: :getBalance() {
return balance;

¥

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {
name = newName;

}
— Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;
ba.setName("Cynthia");

36

Operator overloading (6.2)

e C++ allows you to overload, or redefine, the behavior of many
common operators in the language:

—unary:+ - ++ -- * & | ~ new delete
— binary:+ - * / % 4= -= *= /= %= & | && || ~
== l= < ><=>==[] -> () ,

e Overuse of operator overloading can lead to confusing code.

— Rule of Thumb: Don't abuse this feature. Don't define an overloaded
operator unless its meaning and behavior are completely obvious.

37

Hey future Chris.

This is past Chris.
Tell them about Date!

Date Class

| am always calculating the number of
days until a particular date....

40

Date Class

int main() {
Date today(3,2,2016);
Date springBreak(19,3,2016);

cout << "spring break: << springBreak << endl;

cout << "days until spring break: ";
cout << today.daysUntil(springBreak) << endl;

today.incrementDay() ;

cout << "days until spring break: ";
cout << today.daysUntil(springBreak) << endl;

return O;

41

“summer's date hath all too short a lease”

-Bill Shakespeare, Sonnet 18

But...

C++ has no Dates ®

Today’s Goals

Motivation

/

45

Today’s Goals

Motivation

/

46

You know what to do

48

Today’s Goals

Motivation

/

49

Today’s Goals

Motivation

/

50

Challenge

Adventure Game

(OOO Adventure

You are standing at the end of a road before a small brick
building. A small stream flows out of the building and
down a gully to the south. A road runs up a small hill

to the west.

> WEST

You are at the end of a road at the top of a small hill.
You can see a small building in the valley to the east.

> EAST

Outside building.

>

52

Adventure Game

(OO Adventure

> IN

You are inside a building, a well house for a large spring.
The exit door is to the south. There is another room to
the north, but the door is barred by a shimmering curtain.
There is a set of keys here.

There is a bottle of water here.

>

53

Adventure Game

806

Adventure

> TAKE KEYS
Taken.
>

54

Before you go
send one class name to socrative

STUDENT

Email big ideas to
piech@cs.stanford.edu

Today’s Goals

1. Learn how to define a class in C++

