Lmked Llsts II

. CS106B
Lecture 14
Feb 8, 2016

ontest

Thanks to all of those who submitted

Finalists

682

292

412

372

172

312

322

282

612

112

772

492

Finalist

O ® Console

Welcome to CS 106B project Camouflage

This program is intended to help COMPLIT students to blend their writing with
sources.

It does so by seeding the input essay with vocabulary employed by the original
story.

Note the successive runs may product different results.

This app expects the original story and essay to be in the plaintext format.
Please make sure all quotes are within paired double quotations marks.

Reading thesaurus... please be patient.

-]

Read 30243 words from thesaurus.
Added 70800 definitions

Original story file name? mobydick.txt \J
[Essay file name? essay_moby . txt| .‘0(\0

Finalist

O © Console

Chris: 200 (BTN)
==> Megan: 100

Current Pot Size: 400
Current Bet: 0
Players Left: 2
Players To Act: 1

Megan, it's your turn to act!

Community cards: As8d7sKcQd
Your cards: 3d3h

\f(old, ch)eck, b)et? . \nO
NikO N

Runner Up - Creativity

O © Console

Let's make some limericks! Here are your options:

1. Make limerick
2 or 3. Go back to the main menu
Enter the number next to the setting of your choice 1

nautical life that I had done
increasing darkness of the dun '
'those hieroglyphic ®@ce Console

a scientific Let's make some limericks! Here are your options:
relaxed, and returning the gun

1. Make limerick

2 or 3. Go back to the main menu

Enter the number next to the setting of your choice 1

press anything to continue |

sails shake! Stand by me, hold me, bind
a delirious throb. As, blind

\tenth branch of the crown's

whole deluge and drowns

for it was I never could find

press anything to continue |

e
Gre9o™ Lup?

Runner Up - Algorithmic

Winner - Creativity

o o FractalHealth

Winner - Algorithmic

3 11

3
1 31111
7111111
2 2 35 4 11

111 17

7

1

1

11313 21
4 112 1 2 3

221141113

1171112 12
12111211813 1115116 113142712
1133 3111212123228 21171331¢61
7111117 312 1161211134143 11

7 3117
1. 1:2 2 11

13131131

13116 131

T8 1:52 31 34

11211

7 111117

3 3

123113112

113 211

4 1 4 2 1 2

1111141373

2111235

3 2 2 6 83 1

191121

21 2 2 3 1
3111151

12 2 5

71 2 1113
112 12 2 1

13 145 1

13 1 3 10 2

13 1 16 6

112112

7 21 2 5

10

Thanks for playing

Midterm

PALI ORA

Tell us your favorite song and we’ll create a station that explores that
part of the music universe.

Enter Song [Create]

12

Today’s Goals

1. Round out knowledge of linked lists
2. See how Stack + Queue work

Today’s Goals

Wednesday

e —

14

Today’s Goals

Wednesday

S —— e ——

15

How is the Stack Implemented?

16

Vectorint

class StackRInt { // in VectorInt.h
public:
StackInt (); // constructor

void push(int value); // append a value to the end

int pop(); // return the value at index
private:
VectorInt data; // member variables

s

17

There’s always a better way

What About This?

[push(7);]

int * /

data 8 {9
l_/"'/— |

What About This?

int * /

data 8 \7 9
_/"/—'
[
I

{push(7); }

20

What About This?

[push(7);]

int * /

data 8 {9
l_/"'/— |

What About This?

[push(7);]

int * "

data 8 {9

G\ -
14

Oh Cool

What About This?

[push(6);]

int * "

data 8 \79

G\ -
14

What About This?

{push(G);}

int * /

data 8 \7 9
E\\ -
_ 14
6
—

What About This?

[push(6);]

What About This?

[push(6);]

What About This?

{push(G);}

E o

And Pop?

What About This?

[pop () ;]

What About This?

[pop () ;]

int *
IS

int return

E : L

What About This?

[pop () ;]

int* e
data 8 {9
l_/"/—'
int return
T (o)
6
—

What About This?

[pop();]
data 8 {9

l_/“/- |
int return

: S

What About This?

[pop();]
data 8 {9

l_/“/- |
int return

Linked Lists!

Today’s Goals

Wednesday

S —— e ——

36

Today’s Goals

Wednesday

S —— e ——

B

Linked Lists

o Alinked list is a data structure for storing a sequence of
elements.

o Each element is stored separately from the rest.

o The elements are then chained together into a sequence.

%1/2/3

38

Linked Lists

o Alinked list is a data structure for storing a sequence of
elements.

o Each element is stored separately from the rest.

o The elements are then chained together into a sequence.

%1/2/3 4

39

Linked Lists

o Alinked list is a data structure for storing a sequence of
elements.

o Each element is stored separately from the rest.

o The elements are then chained together into a sequence.

%1/2/3/4

40

Linked Lists

o Alinked list is a data structure for storing a sequence of
elements.

o Each element is stored separately from the rest.

o The elements are then chained together into a sequence.

%1/2/3/4

41

Linked Lists

o Alinked list is a data structure for storing a sequence of
elements.

o Each element is stored separately from the rest.

o The elements are then chained together into a sequence.

%1/2/137/3/4

42

Linked Lists

o Alinked list is a data structure for storing a sequence of
elements.

o Each element is stored separately from the rest.

o The elements are then chained together into a sequence.

%1/137/3/4

43

Linked Lists

Can efficiently splice new elements into the list or remove
existing elements anywhere in the list.

Never have to do a massive copy step; insertion is efficient in
the worst-case.

Has some tradeoffs; we'll see this later.

44

Linked Lists

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

45

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

46

Structs

In C++, a structure is a type consisting of several individual
variables all bundled together.
To create a structure, we must

o Define what fields are in the structure, then

o Create a variable of the appropriate type.

Similar to using classes — need to define and implement the
class before we can use it.

47

Structs

o You can define a structure by using the struct keyword:

struct TypeName {
/* .. field declarations .. */

};

« For those of you with a C background: in C++, “typedef
struct” is not necessary.

48

Structs

struct Tribute {
string name;
int districtNumber;

};

49

Structs

struct Tribute {
string name;
int districtNumber;

};

Tribute t;

50

Structs

struct Tribute {
string name;
int districtNumber;

};

Tribute t;

t.name = "Katniss Everdeen';

t.districtNumber = 12;

51

Structs

e InC++,aclass s apair of an interface and an
implementation.

« Interface controls how the class is to be used.
o Implementation specifies how it works.

e A structisastripped-down version of a class:
o Purely implementation, no interface.

o Primarily used to bundle information together when no
interface is needed.

52

Structs

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

53

Structs

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

54

Structs

As a reminder we can use the new keyword to allocate single
objects.

The syntax:
new T (args)

creates a new object of type T passing the appropriate
arguments to the constructor, then returns a pointer to it.

55

struct Tribute {
string name;
int districtNumber;

}

Structs

56

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;

Structs

57

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;

Structs

58

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;

Structs

llllllllllllllllllllllllllllllllll
. L 4
* *

name

P97

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

59

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;

Structs

llllllllllllllllllllllllllllllllll
. L 4
* *

name

P97

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

60

Structs

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";

llllllllllllllllllllllllllllllllll
. L 4
* *

name

P97

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

61

t->name

Structs

llllllllllllllllllllllllllllllllll
. L 4
* *

name

P97

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

62

t->name

Structs

Because t is a pointer to a
Tribute, not an actual Tribute,
we have to use the arrow operator to
access the fields pointed at by t.

name

?9?7

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

63

Structs

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";

llllllllllllllllllllllllllllllllll
. L 4
* *

name

P97

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

64

Structs

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";

llllllllllllllllllllllllllllllllll
. L 4
* *

Katniss Everdeen

name

P97

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

65

Structs

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

llllllllllllllllllllllllllllllllll
. L 4
* *

Katniss Everdeen

name

?9?7

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

66

Structs

struct Tribute {
string name;
int districtNumber;

}

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

llllllllllllllllllllllllllllllllll
. L 4
* *

Katniss Everdeen

name

12

districtNumbe

* *
*
‘‘‘‘‘
................ I..............-“

67

Structs

As with dynamic arrays, you are responsible for cleaning up
memory allocated with new.

You can deallocate memory with the delete keyword:
delete pftr;

This destroys the object pointed at by the given pointer, not
the pointer itself.

A 4

137

ptr

Structs

As with dynamic arrays, you are responsible for cleaning up
memory allocated with new.

You can deallocate memory with the delete keyword:
delete pftr;

This destroys the object pointed at by the given pointer, not

the pointer itself.

»
L

ptr

69

Building our Vocabulary

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

70

Building our Vocabulary

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

71

The Null Pointer

o« When working with pointers, we sometimes wish to indicate
that a pointer is not pointing to anything.

o In C++, you can set a pointer to NULL to indicate that it is not
pointing to an object:

ptr = NULL;

o This is not the default value for pointers; by default, pointers
default to a garbage value.

72

Building our Vocabulary

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

73

Building our Vocabulary

In order to use linked lists, we will need to introduce or revisit
several new language features:

Structures
Dynamic allocation
Null pointers

74

And now... linked lists!

75

Linked Lists

o Alinked list is a chain of nodes.
o Each cell contains two pieces of information:
o Some piece of data that is stored in the sequence, and

o Alink to the next node in the list.

o We can traverse the list by starting at the first cell and
repeatedly following its link.

76

Linked Lists

o For simplicity, let's assume we're building a linked list of
strings.

« We can represent a node in the linked list as a structure:

struct Node {
string value;
/* ? */ next;

};

77

Linked Lists

o For simplicity, let's assume we're building a linked list of
strings.

« We can represent a node in the linked list as a structure:

struct Node {
string value;
Node* next;

};

78

Linked Lists

o For simplicity, let's assume we're building a linked list of
strings.

« We can represent a node in the linked list as a structure:

struct Node {
string value;
Node* next;

};

o The structure is defined recursively!

79

First Rule of Linked List Club

80

First Rule of Linked List Club

Draw a picture

Today’s Goals

Wednesday

S —— e ——

82

Today’s Goals

Wednesday

S —— e ——

83

Beacons of Gondor

For answer Gandalf cried aloud to his horse. “On, Shadowfax!
We must hasten. Time is short. See! The beacons of Gondor are
alight, calling for aid. War is kindled. See, there is the fire on

Amon Din, and flame on Eilenach, and there they go speeding
west: Nardol, Erelas, Min-Rimmon, Calenhad, and the Halifirien
on the borders of Rohan.”

—J. R. R. Tolkien, The Return of the King, 1955

In a scene that was brilliantly captured in Peter Jackson’s film
adaptation of The Return of the King, Rohan 1s alerted to the
danger to Gondor by a succession of signal fires moving from
mountain top to mountain top. This scene 1s a perfect illustration
of the 1dea of message passing in a linked list.

N o y y o y
Fige Fige Fige Fige Fige Fige Fige

Minas Tirith Amon Din Eilenach Nardol Erelas Min-Rimmon Calenhad Halifirien Rohan

84

The Beacons of Gondor

Volunteer

| WANTYOU
FOR AN ADVENTURE

Beacons of Gondor

struct Tower ({
string name;
Tower *link;

};

/* The name of this tower *x /
/* Pointer to the next tower */

88

Beacons of Gondor

// add the first tower
Tower * head = new Tower;
head->name = “Rohan”;
head->l1link = NULL;

89

Beacons of Gondor

// add the first tower

lTower * head = new Tower;]
ead->name TRohan”;

head->1ink NULL;

90

Beacons of Gondor

// add the first tower
* —

“Rohan” ;

NULL;

head->name
head->1ink

Beacons of Gondor

// add the first tower
Tower * head = new Tower;
head->name “Rohan’ ;
[head->1ink NULL;]

92

Beacons of Gondor

Min-

Filenach Halifirien
;) _i ; lemon ; y
Nardol Erelas Calenhad

Minas Amon
Tirith Din

// add a new tower
Tower * temp =

temp->name = towerName;
temp->1link = head;
head = temp;

new Tower;

Rohan

93

Beacons of Gondor

Filenach Min- Haliﬁrien
;) _i ; 0 lemon ;
Minas Amon Nardol Erelas Calenhad

Tirith Din

lTower * temp new Tower;]

temp->name = towerName;
temp->1link = head;
head = temp;

Rohan

94

Beacons of Gondor

Eilenach

| 1!]
';1'.'.' .‘1'.'.' .‘1'.'.'
./ﬁ’. ‘ _./W’_.

Min-
lemon

—7“\—» —> —>

Haliﬁrien

Minas Amon
Tirith Din

// add a new tower
T r * mp = n T
temp->name = towerName;

r‘

Nardol Erelas Calenhad

temp->Iink = head;
head = temp;

Rohan

95

Beacons of Gondor

Min-

Eilenach Haliﬁrien
;) _i ; 0 lemon ;
Minas Amon Nardol Erelas Calenhad Rohan

Tirith Din

// add a new tower
Tower * temp = new Tower;
temp->name = towerName;
temp->1link = head;

= temp;

Beacons of Gondor

Eilenach

| 1!]
';1'.'.' .‘1'.'.' .‘1'.'.'
./ﬁ’. ‘ _./W’_.

Min-
lemon

—7“\—» —> —>

Haliﬁrien

Minas Amon Nardol Erelas Calenhad

Tirith Din

// add a new tower
Tower * temp = new Tower;
temp->name = towerName;

temp->link = head:
lhead = temp;

Rohan

97

Light the Fire

void signal (Tower *start) {
if (start !'= NULL) {
cout << "Lighting " << start->name << endl;
signal (start->1ink) ;

signal (head) ;

98

Lets Look at What Happens

heod

Y

Message Passing in Linked Lists

To represent this message-passing | struct Tower | |

. . llt (1 f» -t- string name; /* The name of this tower */
lmageﬂ you mlg usc a dce 1n.1 101 Tower *1link; /* Pointer to the next tower */
such as the one shown on the right. | i;

You can then initialize a chain of |/

* Function: createTower (name, link);

Tower Structures, like this: D
* Creates a new Tower with the specified values.
Minas Tirith —» Min-Rimmon */
® o Tower *createTower (string name, Tower *1link) {
Tower *tp = new Tower;
Amon Din |« Calenhad |« tp->name = name;
° ° tp->1ink = link;
return tp;
}
Eilenach |« Halifirien [«
° ° /*
* Function: signal (start);
K
Nardol B Rohan < * Generates a signal beginning at start.
[4 * /
) 3 *
Erelas < void signal (Tower *start) ({

if (start != NULL) {

cout << "Lighting " << start->name << endl;
signal (start->1ink);

Calling signal on the first tower }
sends a message down the chain.

Today’s Goals

Wednesday

S —— e ——

101

Today’s Goals

Wednesday

S —— e ——

102

How is the Stack Implemented?

103

Beacons of Gondor

struct Node({
int value; /* The value of this elem *x /
Node *1link; /* Pointer to the next node */

};

104

Stack is a Linked List

Node * 3 ’ 9"1
data P —
.

105

Stack is a Linked List

Node * 3 ’ 9"1
data P —
.

[push(7);]

106

Stack is a Linked List

{push(7); J
Node * 3 ’ 9‘1
data P —
.

Node*

temp F_7"'1
e

Node * temp = new Node;
temp -> value = 7;

107

Stack is a Linked List

[push(7);]
Node * 3 ’ 9‘1
data P —
.

Node*
temp
=l
—

temp -> link = data;

108

Stack is a Linked List
{push(7); }
N a/:“
G\ -
Node*

data temp;

109

Stack is a Linked List

[push(7);]

Node * 3 ’ 9‘1
data P —
G\ L

exlit function

110

Stack is a Linked List

[pop () ;]

Node * 3 ’ 9"1
data P —
G\ L

Stack is a Linked List

[pop();]
Node * 3 ’ 9'1
data P —
.
int return

: L

int return = data->value;

113

Stack is a Linked List

[pop();]
Node * 3 ’ 9'1
data P —
/

Node*
temp . [7 J
—

Node * temp = data;

int return

114

Stack is a Linked List

[pop();]
Node * 3 ’ 9'1
data P —
/

Node*
temp . [7 J
—

data = temp->1link;

int return

115

Stack is a Linked List

[pop();]
Node * 3 ’ 9'1
data P —
/

Node*
=)

delete temp;

int return

116

Stack is a Linked List

[pop();]
Node * 3 ’ 9'1
data P —
/

int return

L

exlit function + return

117

Big O of Push?

o(1

Big O of Pop?

o(1

Stack in C++

How is the Queue Implemented?

Node * 3 ’ 9"1
data P —
.

122

Queue Enqueue?

Node * 3 ’ 9"1
data P —
G\ L

123

Queue Enqueue?

Node g/’i“
G\ -
3 B((1)

Queue Dequeue?

Node * 3 ’ 9"1
data P —
G\ L

125

-

Node *
data

~

El

Queue Dequeue?

yr—g‘T
— —
ud

126

Queue Dequeue?

Node * 3 ’ 9"1
data P —
GX L

127

Queue Dequeue?

Node *
data

G\

-

{

128

Queue Dequeue?

Node * [o)
data

G\

N

129

Queue Dequeue?

Node * [o)
data

G\

N

O(n)

130

Always a Better Way

Queue Enqueue?

NOde * Node *
tail head

BINBENE
RS

132

Queue Enqueue?

NOde * Node *
tail head

A N
v

Node * cp
cp—->value

Node *

Cp
new Node;

4;

133

Node *
Ccp

Queue Enqueue?

NOde * Node *
tail head

__—

\BgE

tail->1link = cp;

134

Queue Enqueue?

NOde * Node *
tail head

?‘1@
ANTE

tail = cp;

Node *
Ccp

135

Queue Enqueue?

NOde * Node *
tail head

?‘1@
ANTNE N

return

136

Queue Enqueue?

NOde * Node *
tail head

?‘1 3
ENENS '\E
o(l)

Dequeue

Queue Enqueue?

NOde * Node *
tail head

?‘1@
ANTNE N

139

Node * Node *

tail

N

Node * cp

head

= head;

Node *
CcCp

140

Node * Node *

tail head
)

4 (\ 3
— —
S/ -

head = cp->1link;

Node *
CcCp

141

NOde * Node *
tail head

—

4 '\3 2
— — e
./ -~

delete cp;

Node *
CcCp

142

NOde * Node *
tail head

return 1

143

Node *
tail

Node *
head

o(1)

144

Summary

Stack Push

&

&

Stack Pop

Queue Enqueue

N SN N N
H
N— N N N

O

Queue Dequeue

Today’s Goals

Wednesday

S —— e ——

146

Today’s Goals

Wednesday

S —— e ——

147

Today’s Goals

1. Round out knowledge of linked lists
2. See how Stack + Queue work

