S)
<

= 'w". -~
e

\"» &

"?

CS 1068
Lecture 20
Fe 24, 2016

Who Do You Love

And how does Facebook know?

Course Syllabus

Recursioﬂ]

" Intro to
Abstractions

C
_ ——

Under the HoodJ

You are here

Today’s Goal

1. Introduction to Graphs
2. Graphs in C++

Today’s Route

Graphs

raphs n
C++

/

Tree Definition

Only One Parent No Cycles

A,

\; \
P

THFRF ARF NN’

WHAT |r“|‘§1\mn YOU
\

)
'‘RINTFS™

Graph Definition

A graph is a mathematical structure
for representing relationships using nodes and
edges.

*Just like a tree without the rules

Not a Tree

Not a Tree

Not a Tree

7R

Vo .

Simple Graph

struct Node({
string value;
Vector<Edge *> edges;

};

struct Edge{
Node * start;
Node * end;

};

struct Graph{

Set<Node *> nodes;
Set<Edge*> edges;

};

14

Simple Graph

struct Node({
string value;
Vector<Edge *> edges;

};

(" struct Edge { VJ\H ¢
. . e allow for
Node start; more interesting
Node * end; edges

7 Y,
struct Graph{
Set<Node *> nodes;

Set<Edge*> edges;
}s

15

Simple Graph

(struct Edge { W\ low f
. . e allow for
Node start; more interesting
Node * end; edges

g J

16

Simple Graph

\};

/rstruct Edge {

Node * start;
Node * end;
double weight;

A\

We allow for
more interesting
edges

)

17

Simple Graph

Simple Graph

A graph consists of a set of nodes connected by
edges.

19

Graph Nodes

@ Nodes

A graph consists of a set of nodes connected by
edges.

20

Graph Edges

/L
\T

Edges |——'

A graph consists of a set of nodes connected by
edges.

21

Directed Graph

Undirected Graph

Directed vs Undirected

Weighted graphs

weight: Cost associated with a given edge.

example: graph of airline flights, weighted by miles between cities:

25

You have seen this before...

Prerequisite Graph

/ .\
K K recursion </-

exploration
recursion

definition
recursion

27

Social Network Graph

Social Network

facebook

The Internet

™m

ILLINOIS CARNEGI

BURROUGHS

MITRE.

MAP 4 September 1971

)
D
C
-
Q
)
C
()
i -
_I

10 to 20 billion

CS Assighments

32

Chemical Bonds

-aight St

Washrng:on St

bert St

| Moore gy

amson g¢

Veslry

Greenmch St

St

Greenwrch St

Road Map

- vwous Nt 'sy
b %
s Z %
§ = ¢
3 o %
€ (7] 0,)
g 5 &
] I
- Vestry s
J .
Laight s¢ Laight 5y
-~ «
J t t 2
' /
- Hubert sy 4
- -~
7] »
& e
§ g o= 2
3
Q - N
Beach sy - Encsson St —

*= N Moore St
[
Frank)in St Franklin St
f N ¢
)
o”érqr
Hamison s - S

a
L
&
(%]

rck sy

G,
6006‘
& “
/ &
2 I3
=2 O
> S > P
<
® » Oeo ¥ ,}3' C
K3 C% & &
£ & © S
& &
&) <
1 é@ /
7 g (’S,o Q. o“'@f
€ 8y, <, (4
o Bl %% ¥ d
. S s
L ‘
N +
-) Uy Sy
N
:<: ~
=4
3 < %/"e’s
- s N
3 S N
e O
§ .
oy -
! s ‘e Sy
/ '\ ' ‘1{5
N

f Use
?\s borf, NAVTEQ™ - Terms of Use
ooyt Map data’B000 Sanbolh,

©2008 Google -

34

Hot Springs Telephone
\M Telephone ,‘A\\\\

pulver com
Google

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
35

Partisanship

Boggle

Y YN
Ol— <<l Wn
<
Ol || L
<
2 | > |
————
Do O m
Y A A

37

Boggle

Some terms:

Paths

e path: A path from vertex a to b is a sequence of edges that can be
followed starting from a to reach b.

— can be represented as vertices visited, or edges taken
— example, one path from Vto Z: {b, h} or {V, X, Z}
— What are two paths from U to Y?

e path length: Number of vertices
or edges contained in the path.

e neighbor or adjacent: Two vertices
connected directly by an edge.

— example: V and X

41

Loops and cycles

e cycle: A path that begins and ends at the same node.
— example: {b, g, f,c,alor{V, X, Y, W, U, V}.
— example: {c,d, a}or {U, W, V, U}.

— acyclic graph: One that does
not contain any cycles.

e loop: An edge directly from
a node to itself.

— Many graphs don't allow loops.

42

Reachability, connectedness

e reachable: Vertex a is reachable from b
if a path exists from a to b.

e connected: A graph is connected if every
vertex is reachable from every other.

e complete: If every vertex has a direct
edge to every other.

O>—®
o0 %
Josss I

43

Today’s Route

"'{Gmphs o
C++

Graphs

/ » .44

Today’s Route

Stanford BasicGraph

The Stanford C++ library includes a BasicGraph class.
— Based on an older library class named Graph

You can construct a graph and add vertices/edges:

#include "basicgraph.h"

BasicGraph graph;

graph.
graph.
graph.
graph.
graph.
graph.
graph.
graph.
graph.

addVertex("a");
addVertex("b");
addVertex("c");
addVertex("d");
addeEdge("a", "c");
addEdge("b", "c");
addEdge("c", "b");
addEdge("b", "d");
addEdge("c", "d");

©
T

46

#include "basicgraph.h”

BasicGraph members

// a directed, weighted graph

g.addEdge(vi, v2); adds an edge between two vertexes
g.addVertex(name) ; adds a vertex to the graph

g.clear(); removes all vertexes/edges from the graph
g.getEdgeSet() returns all edges, or all edges that start at v,
g.getEdgeSet(v) as a Set of pointers

g.getNeighbors(v) returns a set of all vertices that v has an edge to
g.getVertex(name) returns pointer to vertex with the given name
g.getVertexSet() returns a set of all vertexes

g.isNeighbor(vi, v2) returns true if there is an edge from vertex v1 to v2
g.isEmpty() returns true if queue contains no vertexes/edges
g.removekdge(vl, v2); removes an edge from the graph
g.removeVertex(name) ; removes a vertex from the graph

g.size() returns the number of vertexes in the graph
g.toString() returns a string suchas "{a, b, ¢, a -> b}"

47

Using BasicGraph

The graph stores a struct of information about each vertex/edge:

struct Vertex { struct Edge {
string name; Vertex* start;
Set<Edge*> edges; Vertex* finish; e @

double cost; double weight;
bool visited; }s 3
Vertex* previous;

¥ (—@

// Non standard

You can use these to help implement graph algorithms:

Vertex * vertC = graph.getVertex("c");
Edge * edgeAC = graph.getEdge("a", "c");

48

There are other representations...

... this is the one we are going to use.

Today’s Route

Today’s Route

'/{Graphs n

C++

Algorithms

© Historic Cities Research |

L a3 A% 05 om
L ET) mr.j\r‘;"ht e

YAk AP LA vy

-

Twitter Popularity

NG
-

1. Read a file of

Twitter followers:
idl id2
idl id2 2. Rank users by the
| number of followers

of followers.

BasicGraph exercise

s

/

* Start follows finish

55

BasicGraph exercise

=y ®

* Finish follows start 5

BasicGraph exercise

* Finish follows start i

First Degree Followers

* Finish follows start i

Second Degree Followers

* Finish follows start i

BasicGraph exercise

=y ®

* Finish follows start .

BasicGraph exercise

7 -®

* Finish follows start N

First Degree Followers

* Finish follows start]

Second Degree Followers

* Finish follows start]

i

Twitter Popular

1. Read a file of
Twitter followers:
idl id2
idl id2 2. Rank users by the §
number of followers

of followers.

Today’s Route

'/{Graphs n

C++

Today’s Route

'/{Graphs n

C++

Who Do You Love

And how does Facebook know?

Who Do You Love?

e o ® 9
@ i S (]
o N § .
LS eiee ® @
=] & _ ".«‘ 3 : S i ®
° L & Gamstaw Vel g o, ®
@ : @ &
o0 ® & e ° ® ®
® :
o o @ ® o L e ® o Ve AESY
® 8 kS ® i 2
° @) o @ . ® »
® P | ® g ®
N P ® oo "o
o] " 4 [® @
X ® F<) é @ @ %
e ° [J @ @
@ = L () [IR * o
@
] Y - @ ° ® @
D i 3 &) \ ® 9 ° °
® o ® ” P
[2) 2]
oo o _°% o0 ® oo
& ® @ ® @ ® @

68

Who Do You Love?

69

Who Do You Love?

® @
e ®) ®* 9
@ e ® o ° s}
o TR AR P A
pe o ‘;;;..“Z S .9 ® :
° o o+ ¢ °* g o, ®
® 00 N @ @ - o ® f & °
o o ° o ". ® P o ‘ & »
.0 .O .o S \ : & : . ,00.
o O ; o ¥k
N P ® oo "o
W2, s ° o ® @
e e 2 7 é @ 2 %
e
® « Your significant other ® ° * o
~ e, ht ® o .. o ®
N (S5 SEOR- A\ Na g o
® | o %o ®
® WSS
oo o _° o0 ® o0
o %o © 4 ®
e © e ©

70

Romance and Dispersion

Romantic Partnerships and the Dispersion of Social Ties:
A Network Analysis of Relationship Status on Facebook

Lars Backstrom
Facebook Inc.

ABSTRACT

A crucial task in the analysis of on-line social-networking
systems is to identify important people — those linked by
strong social ties — within an individual’s network neighbor-
hood. Here we investigate this question for a particular cate-
gory of strong ties, those involving spouses or romantic part-
ners. We organize our analysis around a basic question: given
all the connections among a person’s friends, can you recog-
nize his or her romantic partner from the network structure
alone? Using data from a large sample of Facebook users, we
find that this task can be accomplished with high accuracy,
but doing so requires the development of a new measure of tie
strength that we term ‘dispersion’ — the extent to which two
people’s mutual friends are not themselves well-connected.
The results offer methods for identifying types of structurally
significant people in on-line applications, and suggest a po-
tential expansion of existing theories of tie strength.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—Data mining
Keywords: Social Networks; Romantic Relationships.

Jon Kleinberg
Cornell University

they see from friends [1], and organizing their neighborhood
into conceptually coherent groups [23, 25].

Tie Strength.

Tie strength forms an important dimension along which to
characterize a person’s links to their network neighbors. Tie
strength informally refers to the ‘closeness’ of a friendship;
it captures a spectrum that ranges from strong ties with close
friends to weak ties with more distant acquaintances. An ac-
tive line of research reaching back to foundational work in so-
ciology has studied the relationship between the strengths of
ties and their structural role in the underlying social network
[15]. Strong ties are typically ‘embedded’ in the network, sur-
rounded by a large number of mutual friends [6,16], and often
involving large amounts of shared time together [22] and ex-
tensive interaction [17]. Weak ties, in contrast, often involve
few mutual friends and can serve as ‘bridges’ to diverse parts
of the network, providing access to novel information [5, 15].

A fundamental question connected to our nmnda==
strong ties is to identify the ma~t " 20 ’\ 3
narcan’c canial natuned

Octobe

http://arxiv.org/pdf/1310.6753v1.pdf

71

Dispersion Insight

Family members

Dispersion: The extent to which two people’s
mutual friends are not directly connected

72

You

Dispersion

- _—] _— L] —_—] _— L] —_—] _— Iy

!' Mutual 1
| Friends
| |
: O ! Testee
| |
O

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

73

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N\
| Mutual 1
! Friends

O e
or ©

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

74

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual 1 Dispersion: 0
i Friends

O e
or ©

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

75

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual | Dispersion: 1
! Friends

O e
Qr C

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

76

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual | Dispersion: 2
! Friends

O e
ol C

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

77

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual | Dispersion: 3
! Friends

B Rg s
QL C

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

78

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual | Dispersion: 4
! Friends

B Rg s
ol C

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

79

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual | Dispersion: 5
! Friends

O e
QL C

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

80

You

- _—] _— L] —_—] _— L] —_—] _— Iy

7 N
| Mutual 1 Dispersion: 5
i Friends

O e
or ©

. —] —] _—] —] _—] — .

Dispersion: The extent to which two people’s
mutual friends are not directly connected

81

Who Do You Love?

® @
o
@] ’ ®
o ©
. .. %u ’04’ - "
30 o'’ 11, ° @
® ® 0 . t :;}(‘ ® & ® Y
| G ®
L B (. ® ") o ®
° :

e =2 | S\ ® v
7 | .
« Your significant other * * ° ®
® 9 v. @ ® ®
it ua R
.oo ST °* o
- o\ R 7P
oo o _ % oo ® o0
o %o \ e, ®
e © o ©

82

Today’s Route

'/{Graphs n

C++

Today’s Route

'/{Graphs n

C++

Today’s Goal

1. Introduction to Graphs
2. Graphs in C++

Page Rank

:‘
’ﬂ

ﬁ SN

PageHanh

