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Who Do You Love

And how does Facebook know?
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Today’s Goal

1. Introduction to Graphs
2. Graphs in C++
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Tree Definition

Only One Parent No Cycles
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Graph Definition

A graph is a mathematical structure
for representing relationships using nodes and
edges.

*Just like a tree without the rules






Not a Tree



Not a Tree



Not a Tree
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Simple Graph

struct Node({
string value;
Vector<Edge *> edges;

};

struct Edge{
Node * start;
Node * end;

};

struct Graph{

Set<Node *> nodes;
Set<Edge*> edges;

};
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Simple Graph

struct Node({
string value;
Vector<Edge *> edges;

};

(" struct Edge { VJ\H ¢
. . e allow for
Node start; more interesting
Node * end; edges

7 Y,
struct Graph{
Set<Node *> nodes;

Set<Edge*> edges;
}s
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Simple Graph

( struct Edge { W\ low f
. . e allow for
Node start; more interesting
Node * end; edges

g J
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Simple Graph

\};

/rstruct Edge {

Node * start;
Node * end;
double weight;

A\

We allow for
more interesting
edges

)
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Simple Graph




Simple Graph

A graph consists of a set of nodes connected by
edges.
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Graph Nodes

@ Nodes

A graph consists of a set of nodes connected by
edges.
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Graph Edges
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Edges |——'

A graph consists of a set of nodes connected by
edges.
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Directed Graph




Undirected Graph




Directed vs Undirected



Weighted graphs

weight: Cost associated with a given edge.

example: graph of airline flights, weighted by miles between cities:
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You have seen this before...



Prerequisite Graph
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recursion
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Social Network Graph



Social Network
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The Internet
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Chemical Bonds
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Hot Springs Telephone
\M Telephone ,‘A\\\\

pulver com
Google

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
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Boggle







Some terms:



Paths

e path: A path from vertex a to b is a sequence of edges that can be
followed starting from a to reach b.

— can be represented as vertices visited, or edges taken
— example, one path from Vto Z: {b, h} or {V, X, Z}
— What are two paths from U to Y?

e path length: Number of vertices
or edges contained in the path.

e neighbor or adjacent: Two vertices
connected directly by an edge.

— example: V and X
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Loops and cycles

e cycle: A path that begins and ends at the same node.
— example: {b, g, f,c,alor{V, X, Y, W, U, V}.
— example: {c,d, a}or {U, W, V, U}.

— acyclic graph: One that does
not contain any cycles.

e loop: An edge directly from
a node to itself.

— Many graphs don't allow loops.

42



Reachability, connectedness

e reachable: Vertex a is reachable from b
if a path exists from a to b.

e connected: A graph is connected if every
vertex is reachable from every other.

e complete: If every vertex has a direct
edge to every other.

O>—®
o0 %
Josss I
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Stanford BasicGraph

The Stanford C++ library includes a BasicGraph class.
— Based on an older library class named Graph

You can construct a graph and add vertices/edges:

#include "basicgraph.h"

BasicGraph graph;

graph.
graph.
graph.
graph.
graph.
graph.
graph.
graph.
graph.

addVertex("a");
addVertex("b");
addVertex("c");
addVertex("d");
addeEdge("a", "c");
addEdge("b", "c");
addEdge("c", "b");
addEdge("b", "d");
addEdge("c", "d");

©
T
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#include "basicgraph.h”

BasicGraph members

// a directed, weighted graph

g.addEdge(vi, v2); adds an edge between two vertexes
g.addVertex(name) ; adds a vertex to the graph

g.clear(); removes all vertexes/edges from the graph
g.getEdgeSet() returns all edges, or all edges that start at v,
g.getEdgeSet(v) as a Set of pointers

g.getNeighbors(v) returns a set of all vertices that v has an edge to
g.getVertex(name) returns pointer to vertex with the given name
g.getVertexSet() returns a set of all vertexes

g.isNeighbor(vi, v2) returns true if there is an edge from vertex v1 to v2
g.isEmpty() returns true if queue contains no vertexes/edges
g.removekdge(vl, v2); removes an edge from the graph
g.removeVertex(name) ; removes a vertex from the graph

g.size() returns the number of vertexes in the graph
g.toString() returns a string suchas "{a, b, ¢, a -> b}"
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Using BasicGraph

The graph stores a struct of information about each vertex/edge:

struct Vertex { struct Edge {
string name; Vertex* start;
Set<Edge*> edges; Vertex* finish; e @

double cost; double weight;
bool visited; }s 3
Vertex* previous;

¥ (—@

// Non standard

You can use these to help implement graph algorithms:

Vertex * vertC = graph.getVertex("c");
Edge * edgeAC = graph.getEdge("a", "c");
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There are other representations...



... this is the one we are going to use.
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Twitter Popularity

NG
-

1. Read a file of

Twitter followers:
idl id2
idl id2 2. Rank users by the
| number of followers

of followers.




BasicGraph exercise

s
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* Start follows finish
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BasicGraph exercise
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BasicGraph exercise

* Finish follows start i



First Degree Followers

* Finish follows start i



Second Degree Followers

* Finish follows start i



BasicGraph exercise
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BasicGraph exercise
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First Degree Followers

* Finish follows start ]



Second Degree Followers

* Finish follows start ]
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Twitter Popular

1. Read a file of
Twitter followers:
idl id2
idl id2 2. Rank users by the §
number of followers
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Who Do You Love

And how does Facebook know?




Who Do You Love?
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Who Do You Love?
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Who Do You Love?
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Romance and Dispersion

Romantic Partnerships and the Dispersion of Social Ties:
A Network Analysis of Relationship Status on Facebook

Lars Backstrom
Facebook Inc.

ABSTRACT

A crucial task in the analysis of on-line social-networking
systems is to identify important people — those linked by
strong social ties — within an individual’s network neighbor-
hood. Here we investigate this question for a particular cate-
gory of strong ties, those involving spouses or romantic part-
ners. We organize our analysis around a basic question: given
all the connections among a person’s friends, can you recog-
nize his or her romantic partner from the network structure
alone? Using data from a large sample of Facebook users, we
find that this task can be accomplished with high accuracy,
but doing so requires the development of a new measure of tie
strength that we term ‘dispersion’ — the extent to which two
people’s mutual friends are not themselves well-connected.
The results offer methods for identifying types of structurally
significant people in on-line applications, and suggest a po-
tential expansion of existing theories of tie strength.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—Data mining
Keywords: Social Networks; Romantic Relationships.

Jon Kleinberg
Cornell University

they see from friends [1], and organizing their neighborhood
into conceptually coherent groups [23, 25].

Tie Strength.

Tie strength forms an important dimension along which to
characterize a person’s links to their network neighbors. Tie
strength informally refers to the ‘closeness’ of a friendship;
it captures a spectrum that ranges from strong ties with close
friends to weak ties with more distant acquaintances. An ac-
tive line of research reaching back to foundational work in so-
ciology has studied the relationship between the strengths of
ties and their structural role in the underlying social network
[15]. Strong ties are typically ‘embedded’ in the network, sur-
rounded by a large number of mutual friends [6,16], and often
involving large amounts of shared time together [22] and ex-
tensive interaction [17]. Weak ties, in contrast, often involve
few mutual friends and can serve as ‘bridges’ to diverse parts
of the network, providing access to novel information [5, 15].

A fundamental question connected to our nmnda==
strong ties is to identify the ma~t " 20 ’\ 3
narcan’c canial natuned

Octobe

http://arxiv.org/pdf/1310.6753v1.pdf
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Dispersion Insight

Family members

Dispersion: The extent to which two people’s
mutual friends are not directly connected
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Who Do You Love?
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