
CS 106B Section 3 (Week 4)
This week is all about practicing recursion, so all your code should be recursive, even if you can solve the problem 
iteratively. Try to make your recursion as elegant as possible. Avoid redundant cases and if statements. In addition, think 
about what kinds of inputs are invalid for each problem; your function should throw an error if it receives invalid input.

Recommended problems: #2, #4
Extra practice problems: 7.8, 7.10 (from Textbook)

1. writeChars. 
Write a function named writeChars that prints n characters as follows. The middle character (or middle two characters if n 
is even) is an asterisk (*). All characters before the asterisks are ‘<’. All characters after are ‘>’. Throw an error if n is not 
positive. (You do not need to worry about printing an endl at the end.)

 writeChars(1)  "*" 

 writeChars(2)  "**" 

 writeChars(4)  "<**>" 

 writeChars(9)  "<<<<*>>>>" 

void writeChars(int n) { ...

2. isMeasurable.  
Write a function named isMeasurable that determines whether it is possible to measure out the desired target amount 
with a given set of weights. For example, if sample weights is {1, 3}, you can measure a target of weight 2 by putting the 1 
on the left and 3 on the right.

 isMeasurable(2, {1, 3})  true

 isMeasurable(5, {1, 3})  false

 isMeasurable(6, {2, 3, 7})  true

bool isMeasurable(int target, Vector<int>& weights) { ...

3. waysToClimb. 
Write a function named waysToClimb that returns the number of ways to climb the given number of stairs, if you can only 
move up either one or two steps at a time. For example, there are five ways to climb four steps: {1, 1, 1, 1}, {1, 1, 2}, {1, 2, 
1}, {2, 1, 1}, {2, 2}. Throw an error if steps isn’t positive.

 waysToClimb(1)  1

 waysToClimb(2)  2

 waysToClimb(4)  5

int waysToClimb(int steps) { ...
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4. isSubsequence.

Write a function named isSubsequence that takes two strings and returns if the second string is a subsequence of the first 
string. A string is a subsequence of another if it contains the same letters in the same order, but not necessary 
consecutively. You can assume both strings are already lowercased.

 isSubsequence("computer", "core")  false

 isSubsequence("computer", "cope")  true

 isSubsequence("computer", "computer")   true

bool isSubsequence(string big, string small) { ...

5. Debugging Recursion.
The following function recursively finds the maximum integer in a Vector between two indexes (inclusive) by taking the 
maximum from the left half, the maximum in the right half, and then returning the max of those two. For example, if a 
Vector variable named vec contained the values {1,2,3,2,3,4}, the call of recursiveMax(vec, 0, 2)  looks at 
the elements in indexes 0, 1, and 2, and returns 3 because that’s the largest in those indexes. Can you find the bug?
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int recursiveMax(Vector<int>& v, int left, int right) {
    if (left == right) {
        return v[left];
    } else if (left < right) {
        int middle = (left + right) / 2;
        int leftMax = recursiveMax(v, left, middle);
        int rightMax = recursiveMax(v, middle, right);
        if (leftMax > rightMax) {
            return leftMax;
        } else {
            return rightMax;
        }
    } else {
        throw "Invalid range.";
    }
}
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