
CS 106B Section 9 (Week 10)
This week is an optional review for the final. If you do not get to all of them in section, make sure to do the rest on your
own for practice!

1. consume (LinkedLists).
Write a member function named consume that could be added to the LinkedList class. It should accept a reference to
another LinkedList and return void. After the call is done, all the elements from the second LinkedList should be appended
to the end of the first one in the same order, and the second LinkedList should be empty. Note that either linked list can be
empty. For example, if we start with

 list1: {1,3,5,7}

list2: {2,4,6}

list1.consume(list2) produces

list1: {1,3,5,7,2,4,6}

list2: {}

list2.consume(list1) produces

list1: {}

list2: {2,4,6,1,3,5,7}

void LinkedList::consume(LinkedList& other) { ...

2. transferEvens (LinkedLists).
Write a member function transferEvens that could be added to the LinkedList class. It should remove the even-index
elements from its linked list and return a pointer to a new LinkedList object with those elements (in the same order). For
example:

 LinkedList* list1 : {3,1,4,15,9,2,6,5,35,89}

LinkedList* list2 = list1→transferEvens() ￹ produces

list1 : {1,15,2,5,89}

list2 : {3,4,9,6,35}

LinkedList* LinkedList::transferEvens() { ...

Page 1

CS 106B Section 9 (Week 10)
3. hanoi (recursion).

The Tower of Hanoi is a game where you have three pegs (#1, #2, and #3) and some circular disks of different sizes that
slide onto the pegs. They all start on one peg, largest to smallest (largest on the bottom). The goal is to move all the disks
to another peg by following these rules: you may only move one disk at a time from peg to peg; no disk may be placed on
top of a smaller disk. Play through a simple example to figure out how to win the game.

Write a function named hanoi that takes one int, the number of disks and returns void. The function should print the
solution to the game where those disks start on peg 1 and must end up on peg 3. For example, hanoi(3) should print:
(where disk 1 is the smallest and disk 3 is the largest)

move disk 1 from peg 1 to peg 3

move disk 2 from peg 1 to peg 2

move disk 1 from peg 3 to peg 2

move disk 3 from peg 1 to peg 3

move disk 1 from peg 2 to peg 1

move disk 2 from peg 2 to peg 3

move disk 1 from peg 1 to peg 3

void hanoi(int disks) { ...

4. sequential (binary trees).
Write a function named sequential that takes a single int N and returns a pointer to a TreeNode that is the root of a tree
with N nodes, with data fields 0 through N-1, such that the in-order traversal of the tree has data fields in increasing order,
and the tree is balanced. (The number of nodes in any left subtree should be within one of the number of nodes in the
corresponding right subtree.) If there are an odd number of nodes, put the extra node in the right subtree. For example,
sequential(10) must create the following tree and return the pointer to the 4 node:

4
/ \

 1 7
 / \ / \

 0 2 5 8
 \ \ \
 3 6 9

TreeNode* sequential(int n) { ...

Page 2

	CS 106B Section 9 (Week 10)

