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Office	
  Checklist	
  

•  Get	
  speakers	
  
•  Turn	
  on	
  talking	
  hat	
  
•  Tape	
  it	
  into	
  hat	
  
•  Get	
  iphone5	
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Preclass	
  Checklist	
  

•  Play	
  music	
  
•  Tape	
  down	
  seat	
  locaAons	
  
•  Put	
  up/out	
  handouts	
  
•  Set	
  up	
  bins	
  
•  Get	
  sorAng	
  hat	
  accessible	
  
•  Turn	
  on	
  sorAng	
  hat	
  speakers	
  and	
  test	
  
•  Turn	
  on	
  the	
  projector	
  
•  Run	
  HashMap	
  code	
  (and	
  make	
  sure	
  caffeine	
  is	
  on)	
  
•  Test	
  a	
  few	
  Shazam	
  runs	
  
•  Test	
  out	
  the	
  presentaAon	
  pointer	
  
•  Make	
  sure	
  all	
  code	
  is	
  loaded	
  into	
  QT	
  and	
  starter	
  code	
  is	
  empty	
  
•  Running:	
  QT,	
  Powerpoint,	
  Ink2Go	
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Due	
  
Feb	
  24th 

Start	
  
Feb	
  15nd 

Announcement:	
  PQ	
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Programming	
  AbstracAons	
  

Intro to 
Abstractions



Recursion



Under the Hood

 Graphs



Trees





CS106B	
  

Programming	
  AbstracAons	
  

Intro to 
Abstractions



Recursion



Under the Hood

 Graphs



Trees



You are here
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First, a cool program 
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Shazam 

Source:	
  Shazam	
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By the end of today I am going 


to show you how this works.
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We’ve	
  GoYen	
  Ahead	
  of	
  Ourselves	
  

Source:	
  The	
  Hobbit	
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Start	
  at	
  the	
  Beginning	
  

Source:	
  The	
  Hobbit	
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Hashing: The Heart of the Hash Map



Chris Piech



CS106B
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Today’s	
  Goals	
  

1.  Understand how the 
HashMap works







2.  Add hashing to your 
algorithmic toolbox



3.  Practice linked lists
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Today’s	
  Route	
  

Hashing


Collisions



Real 


Hash fns



Code



   Other


 Applications



(eg HashMap<string, string>)
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First	
  ObjecAve	
  

(eg HashMap<string, string>)
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// adds name / text pair to dataset
put(string articleName, string articleHTML)

// returns corresponding articleHTML
get(string articleName)

// removes the article
remove(string articleName)

Wikipedia	
  API	
  



CS106B	
  Source:	
  xkcd	
  

5 million articles and growing



Wikipedia is big! 
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Key = Title, Value = Article



Key:

Value:

Key Value Pairs 

“Mantis Shrimp”
Key:

Value:

“Antelope Canyon”
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Key = Title, Value = Article



Key:

Value:

Key Value Pairs 

“Mantis Shrimp”
Key:

Value:

“Antelope Canyon”

“<p><b>Mantis shrimp</b> 
or <b>stomatopods</b> are 
marine <a href="/wiki/
Crustacean" 
title="Crustacean">crusta
ceans</a>, the members of 
the <a href="/wiki/
Order_(biology)" 
title="Order 
(biology)">order</a> 
<b>Stomatopoda</b>. 
though a few species 
reach up to 38&#160;...”
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Thought	
  Experiment	
  
What if: we store articles in one gigantic vector



Antelope 
Canyon

Stanford 
Band

John 
Coltrane

Cuckoo 
Hashing

Methuselah

Wikipedia:



0

 1

 2

 3

 4
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Thought	
  Experiment	
  

Antelope 
Canyon

Stanford 
Band

John 
Coltrane

Cuckoo 
Hashing

Methuselah

What if: we want to get(“Mantis shrimp”)?	
  

Wikipedia:



0

 1

 2

 3

 4
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Has to be a better way!
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What if: there was a way to know 
where our article belonged just by 

looking at the title?
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Hash Function 

int hash(string key);
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Hash Function 

int hash(string title);
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Wikipedia	
  with	
  Hashing	
  
Wikipedia:



39

 40

 41

 42

 43
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put(“mantis shrimp”, html)
Wikipedia:
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 41
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put(“mantis shrimp”, html)

Mantis 
shrimp

Wikipedia:


39

 40

 41

 42

 43
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Wonderful!
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get(“mantis shrimp”)

Mantis 
shrimp

Wikipedia:
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  Source:	
  Planet	
  Animal	
  Zone	
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Property #1: Consistent 
If you pass in the same input,  you will always get the 
same index.
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Property #2: Well Distributed 
If you pass in the different inputs, a hash function will 
return different indices as often as possible.



Hash Fn
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Does one exist?
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int hash(string key) {
int name0 = alpha(key[0]);
int name1 = alpha(key[1])’
int preHash = name0 + 7 * name1;
return preHash % NUM_BUCKETS;

}

What Does a Hash Fn Look Like? 

You	
  have	
  already	
  seen	
  one!	
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Volunteer 
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HashMap 
Wikipedia:
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Wikipedia:
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Our old friend, linked lists!
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HashMap 
Wikipedia:
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Key


Value


Next



Article:
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HashMap 
Wikipedia:
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get(“Antelope Canyon”) 
Wikipedia:
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  Photo	
  Credit:	
  Alex	
  Mironyuk	
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HashMap 
Wikipedia:
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Wikipedia:



put(“John Coltrane”, html)
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1.  Hash: key -> bucketIndex.


2.  Jump directly to the bucket head.


3.  Run linear search over the short list.



HashMap Algorithm Summary 

0.

Make a large array of linked lists


Initialization:



Getting and Putting:
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Today’s	
  Route	
  

Hashing


Collisions



Real 


Hash fns



Code


Wikipedia



   Other


 Applications



(eg HashMap<string, string>)
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In range [0, max)



Use % operator



Generate a really large


(positive) number



Hash Function 
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!

preHash = Add each 
character in a string



!

preHash = Add each character 
in a string, weighted by 31i



0	
  

1	
  

2	
  

3	
  

4	
  

>=	
  5	
  
Number	
  of	
  collisions	
  

Judge Strings by the Contents of their Characters 

50,000	
  wikipedia	
  
arAcles	
  

Each pixel is one 
bucket in our array
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  *	
  In	
  java,	
  the	
  weights	
  are	
  in	
  reverse	
  order.	
  That	
  is	
  not	
  important	
  :).	
  

The Java Hash 

a[0] + 31 · a[1] + 312 · a[2] + · · ·+ 31n · a[n]

prehash = 

return (prehash % numBuckets) 

Given	
  string	
  a	
  as	
  a	
  key.	
  

!
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Why 31? 
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Bucket	
  distribuAon	
  of	
  50,000	
  arAcle	
  Atles	
  	
  
from	
  Wikipedia	
  

!

What if it was 2? 
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What is the big-O of 
the get	
  method?
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[suspense]
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  *	
  In	
  expectaAon	
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What if nBuckets is too small?!?
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HashMap Big-O 
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Knead to Program It 

Source:	
  Amescity	
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Gopher It 

Source:	
  Planet	
  Animal	
  Zone	
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Today’s	
  Route	
  

Hashing


Collisions



Real 


Hash fns



Code


Wikipedia



   Other


 Applications



(eg HashMap<string, string>)
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And	
  Here	
  We	
  Are	
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Shazam 

Source:	
  Shazam	
  



CS106B	
  Source:	
  Steve	
  Depenport	
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Similar to Wikipedia:


Huge search problem.
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Spectrogram 

Does anyone recognize this song?
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Spectrogram 

Does anyone recognize this song?
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Notes Over Time 

Wang, A. An Industrial-Strength Audio Search Algorithm
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Hash the whole thing?
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No
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Find Pairs of Notes 

Wang, A. An Industrial-Strength Audio Search Algorithm
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Note Pairs 

Wang, A. An Industrial-Strength Audio Search Algorithm
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Note/Songs Map 

You Can Call Me Al – Paul Simon. 7s,
You Can Call Me Al – Paul Simon. 43s,
All Right Now – Police. 18s

Key:

Value:

“Antelope Canyon”
Key:

Value:

Shazam

 Wikipedia



Wang, A. An Industrial-Strength Audio Search Algorithm
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Note Pair Hashing 
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Note Pair Hashing 
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Note Pair Hashing 

Window for n
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Note Pair Hashing 
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Note Pair Hashing 



CS106B	
  

Note Pair Hashing 
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Note Pair Hashing 
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Note Pair Hashing 
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Hashing Note Pairs 

int hash(int f1, int f2, int timeDelta) {    
   int p = 31;    
   int pre = f1 + (p * f2) + (p * p * timeDelta);
   return pre % NUM_BUCKETS;
}

You Can Call Me Al – Paul Simon. 23s,
You Can Call Me Al – Paul Simon. 54s,
Message in a Bottle – Police. 92s

Wang, A. An Industrial-Strength Audio Search Algorithm
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Code Available
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Review
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1.  Hash: key -> bucketIndex.


2.  Jump directly to the bucket head.


3.  Run simple search over the list.



HashMap Algorithm Summary 

0.

Make a large array of linked lists


Initialization:



Getting and Putting:
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Hash Function 
int hash(string key);

1. Consistent

 2. Well Distributed


Hash Fn
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Today’s	
  Goals	
  

1.  Understand how the 
HashMap works







2.  Add hashing to your 
algorithmic toolbox



3.  Practice linked lists
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Place and Time 

N	
  Andy,	
  P	
  Chris,	
  J	
  Huang,	
  L	
  Guibas.	
  Scalable	
  Homework	
  Search	
  for	
  Massive	
  
Open	
  Online	
  Programming	
  Courses.	
  WWW,	
  Seoul	
  2014.	
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Intro to 
Abstractions



Recursion



Under the Hood

 Graphs



Trees



Friday	
  Trees	
  

You will be here
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Thank you
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Midterm 

0	
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Percent	
  Score	
  

77	
  	
  
Perfects Median	
  =	
  86 

A	
  few	
  th
ings	
  to	
  

review Doing	
  great 

Some	
  more	
  serious	
  
review 

Danger	
  zone 
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Modern Times 
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Details 

Midterm	
  
Review	
  Policy	
  
Answer	
  Key 


