
CS106B	

Office	
 Checklist	

•  Get	
 speakers	

•  Turn	
 on	
 talking	
 hat	

•  Tape	
 it	
 into	
 hat	

•  Get	
 iphone5	

CS106B	

Preclass	
 Checklist	

•  Play	
 music	

•  Tape	
 down	
 seat	
 locaAons	

•  Put	
 up/out	
 handouts	

•  Set	
 up	
 bins	

•  Get	
 sorAng	
 hat	
 accessible	

•  Turn	
 on	
 sorAng	
 hat	
 speakers	
 and	
 test	

•  Turn	
 on	
 the	
 projector	

•  Run	
 HashMap	
 code	
 (and	
 make	
 sure	
 caffeine	
 is	
 on)	

•  Test	
 a	
 few	
 Shazam	
 runs	

•  Test	
 out	
 the	
 presentaAon	
 pointer	

•  Make	
 sure	
 all	
 code	
 is	
 loaded	
 into	
 QT	
 and	
 starter	
 code	
 is	
 empty	

•  Running:	
 QT,	
 Powerpoint,	
 Ink2Go	

CS106B	

Due	

Feb	
 24th

Start	

Feb	
 15nd

Announcement:	
 PQ	

CS106B	

Programming	
 AbstracAons	

Intro to
Abstractions

Recursion

Under the Hood

 Graphs

Trees

CS106B	

Programming	
 AbstracAons	

Intro to
Abstractions

Recursion

Under the Hood

 Graphs

Trees

You are here

CS106B	

First, a cool program

CS106B	

Shazam

Source:	
 Shazam	

CS106B	

By the end of today I am going

to show you how this works.

CS106B	

We’ve	
 GoYen	
 Ahead	
 of	
 Ourselves	

Source:	
 The	
 Hobbit	

CS106B	

Start	
 at	
 the	
 Beginning	

Source:	
 The	
 Hobbit	

CS106B	

Hashing: The Heart of the Hash Map

Chris Piech

CS106B

CS106B	

Today’s	
 Goals	

1.  Understand how the
HashMap works

2.  Add hashing to your
algorithmic toolbox

3.  Practice linked lists

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

First	
 ObjecAve	

(eg HashMap<string, string>)

CS106B	

// adds name / text pair to dataset
put(string articleName, string articleHTML)

// returns corresponding articleHTML
get(string articleName)

// removes the article
remove(string articleName)

Wikipedia	
 API	

CS106B	
 Source:	
 xkcd	

5 million articles and growing

Wikipedia is big!

CS106B	

Key = Title, Value = Article

Key:

Value:

Key Value Pairs

“Mantis Shrimp”
Key:

Value:

“Antelope Canyon”

CS106B	

Key = Title, Value = Article

Key:

Value:

Key Value Pairs

“Mantis Shrimp”
Key:

Value:

“Antelope Canyon”

“<p>Mantis shrimp
or stomatopods are
marine <a href="/wiki/
Crustacean"
title="Crustacean">crusta
ceans, the members of
the <a href="/wiki/
Order_(biology)"
title="Order
(biology)">order
Stomatopoda.
though a few species
reach up to 38 ...”

CS106B	

Thought	
 Experiment	

What if: we store articles in one gigantic vector

Antelope
Canyon

Stanford
Band

John
Coltrane

Cuckoo
Hashing

Methuselah

Wikipedia:

0

 1

 2

 3

 4

CS106B	

Thought	
 Experiment	

Antelope
Canyon

Stanford
Band

John
Coltrane

Cuckoo
Hashing

Methuselah

What if: we want to get(“Mantis shrimp”)?	

Wikipedia:

0

 1

 2

 3

 4

CS106B	

Thought	
 Experiment	

Antelope
Canyon

Stanford
Band

John
Coltrane

Cuckoo
Hashing

Methuselah

What if: we want to get(“Mantis shrimp”)?	

Wikipedia:

0

 1

 2

 3

 4

CS106B	

Thought	
 Experiment	

Antelope
Canyon

Stanford
Band

John
Coltrane

Cuckoo
Hashing

Methuselah

What if: we want to get(“Mantis shrimp”)?	

Wikipedia:

0

 1

 2

 3

 4

CS106B	

Thought	
 Experiment	

Antelope
Canyon

Stanford
Band

John
Coltrane

Cuckoo
Hashing

Methuselah

What if: we want to get(“Mantis shrimp”)?	

Wikipedia:

0

 1

 2

 3

 4

CS106B	

Thought	
 Experiment	

Antelope
Canyon

Stanford
Band

John
Coltrane

Cuckoo
Hashing

Methuselah

What if: we want to get(“Mantis shrimp”)?	

Wikipedia:

0

 1

 2

 3

 4

CS106B	

Has to be a better way!

CS106B	

What if: there was a way to know
where our article belonged just by

looking at the title?

CS106B	

Hash Function

int hash(string key);

CS106B	

Hash Function

int hash(string title);

CS106B	

Wikipedia	
 with	
 Hashing	

Wikipedia:

39

 40

 41

 42

 43

CS106B	

put(“mantis shrimp”, html)
Wikipedia:

39

 40

 41

 42

 43

CS106B	

put(“mantis shrimp”, html)
Wikipedia:

39

 40

 41

 42

 43

CS106B	

put(“mantis shrimp”, html)
Wikipedia:

39

 40

 41

 42

 43

CS106B	

put(“mantis shrimp”, html)
Wikipedia:

39

 40

 41

 42

 43

CS106B	

put(“mantis shrimp”, html)

Mantis
shrimp

Wikipedia:

39

 40

 41

 42

 43

CS106B	

Wonderful!

CS106B	

get(“mantis shrimp”)

Mantis
shrimp

Wikipedia:

39

 40

 41

 42

 43

CS106B	

get(“mantis shrimp”)

Mantis
shrimp

Wikipedia:

39

 40

 41

 42

 43

CS106B	

get(“mantis shrimp”)

Mantis
shrimp

Wikipedia:

39

 40

 41

 42

 43

CS106B	

get(“mantis shrimp”)

Mantis
shrimp

Wikipedia:

39

 40

 41

 42

 43

CS106B	
 Source:	
 Planet	
 Animal	
 Zone	

CS106B	

CS106B	

Property #1: Consistent
If you pass in the same input, you will always get the
same index.

CS106B	

Property #2: Well Distributed
If you pass in the different inputs, a hash function will
return different indices as often as possible.

Hash Fn

CS106B	

Does one exist?

CS106B	

int hash(string key) {
int name0 = alpha(key[0]);
int name1 = alpha(key[1])’
int preHash = name0 + 7 * name1;
return preHash % NUM_BUCKETS;

}

What Does a Hash Fn Look Like?

You	
 have	
 already	
 seen	
 one!	

CS106B	

Volunteer

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

HashMap
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

HashMap
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

Our old friend, linked lists!

CS106B	

HashMap
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

Key

Value

Next

Article:

CS106B	

HashMap
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

get(“Antelope Canyon”)
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	
 Photo	
 Credit:	
 Alex	
 Mironyuk	

CS106B	

HashMap
Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

put(“John Coltrane”, html)

Wikipedia:

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

Wikipedia:

put(“John Coltrane”, html)

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

14

 49,999

CS106B	

1.  Hash: key -> bucketIndex.

2.  Jump directly to the bucket head.

3.  Run linear search over the short list.

HashMap Algorithm Summary

0.

Make a large array of linked lists

Initialization:

Getting and Putting:

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

In range [0, max)

Use % operator

Generate a really large

(positive) number

Hash Function

CS106B	

!

preHash = Add each
character in a string

!

preHash = Add each character
in a string, weighted by 31i

0	

1	

2	

3	

4	

>=	
 5	

Number	
 of	
 collisions	

Judge Strings by the Contents of their Characters

50,000	
 wikipedia	

arAcles	

Each pixel is one
bucket in our array

CS106B	
 *	
 In	
 java,	
 the	
 weights	
 are	
 in	
 reverse	
 order.	
 That	
 is	
 not	
 important	
 :).	

The Java Hash

a[0] + 31 · a[1] + 312 · a[2] + · · ·+ 31n · a[n]

prehash =

return (prehash % numBuckets)

Given	
 string	
 a	
 as	
 a	
 key.	

!

CS106B	

Why 31?

CS106B	

Bucket	
 distribuAon	
 of	
 50,000	
 arAcle	
 Atles	
 	

from	
 Wikipedia	

!

What if it was 2?

CS106B	

What is the big-O of
the get	
 method?

CS106B	

CS106B	

[suspense]

CS106B	
 *	
 In	
 expectaAon	

CS106B	

What if nBuckets is too small?!?

CS106B	

HashMap Big-O

CS106B	

CS106B	

Knead to Program It

Source:	
 Amescity	

CS106B	

Gopher It

Source:	
 Planet	
 Animal	
 Zone	

CS106B	

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

Today’s	
 Route	

Hashing

Collisions

Real

Hash fns

Code

Wikipedia

 Other

 Applications

(eg HashMap<string, string>)

CS106B	

And	
 Here	
 We	
 Are	

CS106B	

Shazam

Source:	
 Shazam	

CS106B	
 Source:	
 Steve	
 Depenport	

CS106B	

Similar to Wikipedia:

Huge search problem.

CS106B	

Spectrogram

Does anyone recognize this song?

CS106B	

Spectrogram

Does anyone recognize this song?

CS106B	

Notes Over Time

Wang, A. An Industrial-Strength Audio Search Algorithm

CS106B	

Hash the whole thing?

CS106B	

No

CS106B	

Find Pairs of Notes

Wang, A. An Industrial-Strength Audio Search Algorithm

CS106B	

Note Pairs

Wang, A. An Industrial-Strength Audio Search Algorithm

CS106B	

Note/Songs Map

You Can Call Me Al – Paul Simon. 7s,
You Can Call Me Al – Paul Simon. 43s,
All Right Now – Police. 18s

Key:

Value:

“Antelope Canyon”
Key:

Value:

Shazam

 Wikipedia

Wang, A. An Industrial-Strength Audio Search Algorithm

CS106B	

Note Pair Hashing

CS106B	

Note Pair Hashing

CS106B	

Note Pair Hashing

Window for n

CS106B	

Note Pair Hashing

CS106B	

Note Pair Hashing

CS106B	

Note Pair Hashing

CS106B	

Note Pair Hashing

CS106B	

Note Pair Hashing

CS106B	

Hashing Note Pairs

int hash(int f1, int f2, int timeDelta) {
 int p = 31;
 int pre = f1 + (p * f2) + (p * p * timeDelta);
 return pre % NUM_BUCKETS;
}

You Can Call Me Al – Paul Simon. 23s,
You Can Call Me Al – Paul Simon. 54s,
Message in a Bottle – Police. 92s

Wang, A. An Industrial-Strength Audio Search Algorithm

CS106B	

Code Available

CS106B	

Review

CS106B	

1.  Hash: key -> bucketIndex.

2.  Jump directly to the bucket head.

3.  Run simple search over the list.

HashMap Algorithm Summary

0.

Make a large array of linked lists

Initialization:

Getting and Putting:

CS106B	

Hash Function
int hash(string key);

1. Consistent

 2. Well Distributed

Hash Fn

CS106B	

Today’s	
 Goals	

1.  Understand how the
HashMap works

2.  Add hashing to your
algorithmic toolbox

3.  Practice linked lists

CS106B	

Today’s	
 Goals	

1.  Understand how the
HashMap works

2.  Add hashing to your
algorithmic toolbox

3.  Practice linked lists

CS106B	

Place and Time

N	
 Andy,	
 P	
 Chris,	
 J	
 Huang,	
 L	
 Guibas.	
 Scalable	
 Homework	
 Search	
 for	
 Massive	

Open	
 Online	
 Programming	
 Courses.	
 WWW,	
 Seoul	
 2014.	

CS106B	

Intro to
Abstractions

Recursion

Under the Hood

 Graphs

Trees

Friday	
 Trees	

You will be here

CS106B	

Thank you

CS106B	

Midterm

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

N
um

	
 S
tu
de

nt
s	

Percent	
 Score	

77	
 	

Perfects Median	
 =	
 86

A	
 few	
 th
ings	
 to	

review Doing	
 great

Some	
 more	
 serious	

review

Danger	
 zone

CS106B	

Modern Times

CS106B	

Details

Midterm	

Review	
 Policy	

Answer	
 Key

