B Stacks and Queues

Cc_)llection Classes Part 2

.,

Lecture 3

Jan 11, 2015

e & “_ E — o
WS T e

-

.
N\










CS + Social Good

NV

CS+SOCIAL GOOD

Wednesday 3:30 - 5:20pm

See website for signup link!



Computer Forum Career Fair

STANFORD (/-

COMPUTER FORUM

Computer Forum Career Fair

When: Wed, Jan 13t

What: Computer Forum Career Fair

Date: Wednesday, January 14

Time: Time: 1lam-4pm

Location: Lawn between the Gates CS Building and the Electrical

Engineering Buildings

Description: The Computer Forum Career Fairs enable Stanford

Engineering students, specifically CS and EE, to get a
head start on careers and internships.







Collections

Vector Grid Map

Stack Queue Set



Collections

Vector Grid Map

Stack Queue Set



Today’s Goals

1. Learn how to use Stacks

2. Learn how to use Queues




Today’s Goals

7~ Stacks

Review

/




Today’s Goals

Queues
72 Stacks >

Review







Collection Classes

These classes contain other objects and are called container or
collection classes.

Vector Grid Stack Queue Map Set

Here are some general guidelines for using these classes:

These classes represent abstract data types whose details are hidden.
Each class requires type parameters.

Any memory for these objects is freed when its declaration scope
ends.

Assigning one value to another copies the entire structure.
To avoid copying, these structures are usually passed by reference.



Template Classes

e The collection classes are implemented as template classes,

which make it possible for an entire family of classes to share
the same code.

e |nstead of using the class name alone, the collection classes
require a type parameter that specifies the element type.
For example, vector<int> represents a vector of integers.

Similarly, Grid<char> represents a two-dimensional array of
characters.

e |t is possible to nest classes, so that, for example, you could

use the following definition to represent a list of chess
positions:

Vector<Grid<char> > chessPositions;



Review: Read File to Vector

Function: readEntireFile
* Usage: readEntireFile(is, lines);

* Reads the entire contents of the specified input stream
* 1nto the string vector lines. The client 1s responsible
for opening and closing the stream

*/

void readEntireFile(istream & 1is, Vector<string> & lines) {
lines.clear () ;
string line;
while (getline(is, line)) {
lines.add(line);




Review: Read File to Vector

Function: readEntireFile
* Usage: readEntireFile(is, lines);

* Reads the entire contents of the specified input stream
* 1nto the string vector lines. The client 1s responsible
for opening and closing the stream

*/

void readEntireFile(istream & 1is, Vector<string> & lines) {
lines.clear () ;
string line;
while (getline(is, line)) {
lines.add(line);




Ve
loci
ir
aptor $
afe
ty

-
A
— ﬁ
: b
‘oo'a« (\\*\\\\\ X 'as‘oed oW
of o%va((\ \N\\e(\ *\Nai‘
>




Today’s Goals

Queues
72 Stacks >

Review




Today’s Goals




The Stack Metaphor

Last in, first out. LIFO
push and pop

Dish metaphor




The Stack<type>

stack.size ()
Returns the number of values pushed onto the stack.

stack.isEmpty ()
Returns true if the stack is empty.

stack.push (value)
Pushes a new value onto the stack.

stack.pop ()
Removes and returns the top value from the stack.

stack.peek ()
Returns the top value from the stack without removing it.

stack.clear ()
Removes all values from the stack.




The Stack<type>

stack.isEmpty ()
Returns true if the stack is empty.

stack.push (value)
Pushes a new value onto the stack.

stack.pop ()
Removes and returns the top value from the stack.




The Call Stack

functionC

functionB

functionA

main

Function (aka method) call stack:
Last in, First out Queue



Balance Parenthesis

Check if parenthesis are balanced

(606

OperatorMatching

Enter string:
Enter string:

Enter string:

{ s =

(a(2)

2 * (3); x

Brackets are properly nested

+ b (3}

Brackets are incorrect




Today’s Goals




Today’s Goals

7~ Stacks

Review

/




The Queue Metaphor

First in, first out. FIFO
enqueue and dequeue

Line metaphor




The LalR Queue

Helper Queue

Help requests
Up next:

Queue status

Signups enabled
0 unclaimed requests
Wait time: None!

Active helpers

Heather Kramer Busy
JEvans Busy

Shirin Salehi Busy

% Charissa Plattner
% Isabelle Ziebold

% Conner Smith

% Michael Dworsky
Janet An Busy

% Lucio Dery

% Jeffrey Zoch

Room 1 |



The LalR Queue

i

il

-

Hermoine Granger: | don’t
understand file reading on Game of
Life




The LalR Queue

Helper Queue

Help requests
Up next:

Queue status
. . Signups enabled
H e r m O I n e G ra n g e r Student Left Reassign to.. O unclaimed requests

Wait time: None!

j«

Location: Old Union ‘ Heather Kramer is helping

9:06 PM Active helpers

Heather Kramer Busy
JEvans Busy

Shirin Salehi Busy

% Charissa Plattner
% Isabelle Ziebold

% Conner Smith

% Michael Dworsky
Janet An Busy

% Lucio Dery

% Jeffrey Zoch

Room 1 |



The LalR Queue

5

a

Ron Weasley: My QT Creator is doing
something weird




The LalR Queue

Helper Queue

Help requests
Up next:

Queue status
. . Signups enabled
H e r m O I n e G ra n g e r Student Left Reassign to.. O unclaimed requests

Wait time: None!

j«

Location: Old Union ‘ Heather Kramer is helping

9:06 PM Active helpers

Heather Kramer Busy

d ft i Busy
Student Lef Mark Resolve Reassign to... A= N
Ron Weasley ShirnSalei Busy

% Charissa Plattner
% Isabelle Ziebold
‘ gfd % Conner Smith
% Michael Dworsky
Janet An Busy
% Lucio Dery
% Jeffrey Zoch

Location: Old Union \ Heather Kramer is helping 9:06 PM

Room 1 |



The LalR Queue

Hermoine Granger: | get it! Thanks
for the help...

= nmnrv-—— '

-

PR
e N T -:rrt\\"\

T s TR VA0




The LalR Queue

Helper Queue

Help requests
Up next:

Queue status

Student Left Reassign to... Signups enabled
Ron Weasley

0 unclaimed requests
Wait time: None!

-

Location: Old Union \ Heather Kramer is helping

9:06 PM Active helpers

Heather Kramer Busy
JEvans Busy

Shirin Salehi Busy

% Charissa Plattner
% Isabelle Ziebold

% Conner Smith

% Michael Dworsky
Janet An Busy

% Lucio Dery

% Jeffrey Zoch

Room 1 |



@ Spotify File Edit View Playback Window Help

soe ¢
Play Queue

QUEUE HISTORY

CURRENT TRACK

# SONG

€) -+ Finally Moving

QUEUED TRACKS

4 SONG

1 <+  Memories

2 -+  Berlin

3 + Swim Until You Can't See Land
4 -+ Riptide

5 v  ElKilo

6 -+  Old Pine

7 -+ Islands

Spotify:

ARTIST

Pretty Lights

ARTIST

Petit Biscuit

The Piano Guys

Frightened Rabbit

Vance Joy

Orishas

Ben Howard

The xx

ALBUM

Taking up Your Preciou...

ALBUM

Memories

The Piano Guys 2

The Winter of Mixed Diri...

Riptide

Antidiotico

Every Kingdom

4:37

37% @)

4:38

3:36

4:01

4:19

3:24

4:25

D20

2:41

LYRICS

Sun 1

P



Queue<type>

queue.size ()
Returns the number of values in the queue.

queue .i1sEmpty ()
Returns true if the queue is empty.

queue.enqueue (value)
Adds a new value to the end of the queue (which is often called its tail).

queue .dequeue ()
Removes and returns the value at the front of the queue (its head).

queue .peek ()
Returns the value at the head of the queue without removing it.

queue.clear ()
Removes all values from the queue.




Queue<type>

queue .i1sEmpty ()
Returns true if the queue is empty.

queue.enqueue (value)
Adds a new value to the end of the queue (which is often called its tail).

queue .dequeue ()
Removes and returns the value at the front of the queue (its head).




Stacks vs Queues




Stacks vs Queues

push m
Stack: ‘-/
pop
enqueue
Queue: J




Why not Vector?



Today’s Goals

7~ Stacks

Review

/




Today’s Goals

7~ Stacks

Review

/







Digital Music: Queue of Intensities

song:

001 0.16 | 031 | 0.45 | 0.58 | 0.69

AN
l

Front of the queue



Playing Digital Music

1. Dequeue 2. Play

song:

0.01 | 0.16 | 0.31 | 0.45 | 0.58 | 0.69

&)

AN
l

Front of the queue



Playing Digital Music

1. Dequeue 2. Play

song:

0.16 | 0.31 | 0.45 | 0.58 | 0.69

AN
I

Front of the queue



Playing Digital Music

1. Dequeue 2. Play

song:

0.16 | 0.31 | 0.45 | 0.58 | 0.69

AN
I

Front of the queue



Playing Digital Music

1. Dequeue 2. Play

song:

0.16 | 0.31 | 045 | 0.58 | 0.69 | 0.78

&)

AN
!

Front of the queue



Digital Music

song:
0.01 | 0.16 | 0.31 | 0.45 | 0.58 0.69j
_— The Sun
I
by
Parov Stelar

0.78 | 0.85 | 0.90 | 0.93 | 0.95 0.95

0.93

0,02 milliseconds >~

091 | 083 | 0.84 | 0.81 | 0.77 | 0.74 | 0.71 | eeo







Guitar String

void pluck(Queue<double>& sound, double freq) {

double sample(Queue<double>& sound) {



How to pluck a guitar string



Karplus Algorithm: Pluck

> Each string has a frequency.

> Let N be the number of speaker samples in
one wave at that frequency.

’ Enqueue N random numbers.



How to sample a guitar string



Karplus Algorithm: Sample

0.01 | 0.16 | 0.31 | 0.45 | 0.58

AN
I

Front of the queue



Karplus Algorithm: Sample

1. Average these two numbers and
enqueue the result * 0.997

0.01 | 0.16 | 0.31 | 0.45 | 0.58

Front of the queue



Karplus Algorithm: Sample

Enqueue

1. Average these two numbers and
enqueue the result * 0.997 0.08

001 | 0.16 | 0.31 | 045 | 0.58 | ==

Front of the queue



Karplus Algorithm: Sample

2. Dequeue the top for the speaker to
play

0.01 | 0.16 | 0.31 | 0.45 | 0.58

AN
I

Front of the queue



Karplus Algorithm: Sample

2. Dequeue the top for the speaker to
play

0.16 | 0.31 | 045 | 0.58 | 0.12

0.01

AN
I

Front of the queue



Guitar String

void pluck(Queue<double>& sound, double freq) {
sound.clear();

int n = RATE / freq; //how many values we need
for(int 1 = 0; 1 < n; i++) {
sound.queue(randomReal (-1.0, 1.0));

}

double sample(Queue<double>& sound) {
double a = sound.dequeue();
double b = sound.peek();
double next = 0.997 * (a + b) / 2;
sound.enqueue (next) ;
return a;



jiiaas==RE




Today’s Goals

7~ Stacks

Review

/




Today’s Goals

7~ Stacks

Review

/




Today’'s Goals

1. Learn how to use Stacks

2. Learn how to use Queues




The End



