
CS 106B Sec
on 2 (Week 3)

This week has more prac�ce with data structures (Stacks, Queues, [Hash]Sets, [Hash]Maps), as well as a taste of

wri�ng func�ons recursively. As they say, in order to understand recursion, you $rst need to understand

recursion.

Recommended problems: #2, #4, #7

Extra prac�ce problems: 5.13, 5.22, 7.2 (from Textbook)

1. reorder. (Stacks/Queues)

Write a func�on named reorder that takes a queue of integers that are already sorted by absolute value, and

modi$es it so that the integers are sorted normally. You are not allowed to declare any data structures other

than a single Stack<int>.

void reorder(Queue<int>& queue) { ...

2. twice. (Sets)

Write a func�on named twice that takes a vector of integers and returns a set containing all the numbers in the

vector that appear exactly twice. Bonus: do the same thing, but you are not allowed to declare any kind of data

structure other than sets.

Set<int> twice(Vector<int>& numbers) { ...

3. unionSets. (Sets)

Write a func�on named unionSets that takes a set of sets of ints, and returns the union of all of the sets of ints.

(A union is the combina�on of everything in each set.) For example, if a Set variable named sets stores the

following set of integers, the call of unionSets(sets) should return {1,2,3,4,5,6,7}.

{{1,3},{2,3,4,5},{3,5,6,7}}

Set<int> unionSets(HashSet<Set<int> >& sets) { ...

4. reverse. (Maps)

Write a func�on named reverse that takes a map from ints to strings, and returns a map with the associa�ons

reversed. For example, if a Map variable named map stores { 1: "a", 2: "b", 3: "c" }, the call of

reverse(map) should return { "a": 1, "b": 2, "c": 3 }. If there are duplicate values (k1, v) and (k2,

v) in the original map, your returned map may contain either (v, k1) or (v, k2).

Map<string, int> reverse(Map<int, string>& map) { ...

Page 1

CS 106B Sec
on 2 (Week 3)

5. print2grams. (Maps)

Write a func�on named print2grams that takes a data structure containing 2-grams and a score for each one,

where the $rst word in the 2-gram is a key in the outer Map and the second word is a key in the inner Map.

First, discuss how the twoGrams map is structured. Then, print each 2-gram and its score. Prin�ng the map with

key/value pairs { "a": { "b": 1.0, "c": 2.0 }, "x": { "y": 3.0, "z": 4.0 } } should yield

the following output:

a b: 1.0
a c: 2.0
x y: 3.0
x z: 4.0

void print2grams(Map<string, Map<string, double> >& twoGrams) { ...

6. mystery. (recursion I)

What does the following func�on return if you pass in 1? 15? 314? 271828? -1414?

 1

 2

 3

 4

 5

 6

 7

 8

 9

int mystery(int n) {
 if (n < 0) {
 return mystery(-n);
 else if (n < 10) {
 return n;
 } else {
 return n % 10 + mystery(n/10);
 }
}

7. cannonballs. (recursion II)

Write a func�on named cannonballs that returns the number of cannonballs in a square pyramid of cannonballs

of the given height. For example, in a square pyramid of height 3, the bo<om layer has 9 balls, the middle layer

has 4, and there is one ball on top, so cannonballs(3) returns 14. (You can assume that height won’t be

nega�ve).

int cannonballs(int height) { ...

8. reverse. (recursion III)

Write a func�on named reverse that takes a string and reverses it. For example, reversing “Hello World” returns

“dlroW olleH”.

string reverse(string s) { ...

Page 2

	CS 106B Section 2 (Week 3)

