
CS	106B	Section	5	(Week	6)	

	 	 Page	1	of	2	
	

	
Recommended	problems:	1,	3,	4	
	
	

1. Big-O	
The	following	snippets	of	code	try	to	find	the	number	of	‘a’	characters	in	a	Grid	of	characters.	What	is	the	
Big-O	complexity	of	the	following	code,	where	board	has	N	rows	and	columns?	

int numA(Grid<char> board) {
 Vector<int> total;
 for (int row = 0; row < board.numRows(); row++) {
 for (int col = 0; col < board.numCols(); col++) {
 for (int rowT = 0; rowT <= row; rowT++) {
 for (char ch = 'a'; ch <= 'z'; ch++) {
 if (ch == 'a' && rowT == row && board[row][col] == ch) {
 total.add(38);
 }
 }
 }
 }
 }
 return total.size();
}

int numARecursive(Grid<char> &board) {
 int total = 0;
 for (int i = 0; i < board.numRows(); i++) {
 total += (board[i][0] == 'a');
 }
 if (board.numCols() == 1) {
 return total;
 }
 Grid<char> newBoard(board.numRows(), board.numCols() - 1);
 for (int i = 0; i < board.numRows(); i++) {
 for (int j = 0; j < board.numCols() - 1; j++) {
 newBoard[i][j] = board[i][j + 1];
 }
 }
 return total + numARecursive(newBoard);
}

	

2. Sorting	
Bubble	sort	is	a	sorting	algorithm	which	loops	through	a	list	of	elements,	compares	each	pair	of	adjacent	
items,	and	swaps	them	if	they	are	in	the	wrong	order.	This	is	repeated	until	swaps	are	no	longer	needed.	
Cocktail	sort	works	similarly	to	bubble	sort	but	instead	sorts	in	both	directions	on	each	pass	through	the	
list,	alternating	between	moving	up	the	list	and	down	the	list.	
	
Write	a	function	cocktailSort	which	takes	a	vector	of	integers	and	sorts	them	in	place	using	the	Cocktail	
Sort	algorithm.	
	

void cocktailSort(Vector<int> &vec) { . . .
	
	

CS	106B	Section	5	(Week	6)	

	 	 Page	2	of	2	
	

3. Classes	
	
Consider	the	Fraction	class	that	was	introduced	in	lecture:	

Write	a	reciprocal	public	function	to	be	added	to	the	Fraction	class	which	coverts	the	function	to	its	
reciprocal	(note	that	by	definition	the	reciprocal	of	a	number	𝑥	is	a	number	𝑦	such	that	𝑥𝑦 = 1	holds).	

void Fraction::reciprocal() { . . .

Write	a	divide	public	function	to	be	added	to	the	Fraction	class	which	divides	the	Fraction	by	a	given	
Fraction	by	leveraging	the	existing	mult	function.	

void Fraction::divide(Fraction f) { . . .

4. Pointers	
	
What	does	the	following	code	snippet	produce?	

void NBC(int *liz, int jack, int& tracy) {
 jack += *liz;
 tracy *= jack;
 (*liz) = 1;
 jack = *liz;
}

int main() {
 int jim = -6;
 int pam = 21;
 int dwight = 2;
 NBC(&jim, dwight, pam);
 cout << jim << " " << pam << " " << dwight << " " << endl;
 return 0;
}

