
CS 106B Sec
on 5 (Week 6)

Recommended problems: #4, #8, #9

Extra prac�ce problems: 11.2, 11.7 (from Textbook)

ListNode structure (represents a single data value in a linked list, and a link to the next node)

struct ListNode {
 int data; // data stored in this node
 ListNode* next; // a link to the next node in the list

 // Constructs a node with the given data and a NULL next link.
 ListNode(int data) {
 this->data = data;
 this->next = NULL;
 }

 // Constructs a node with the given data and the given next link.
 ListNode(int data, ListNode* next) {
 this->data = data;
 this->next = next;
 }
};

Here is a diagram of two ListNodes that result from running the two lines of code below. No�ce what the di�erent

arrows point to (whether it is the object instances of ListNode or the data inside).

LinkedList class (represents a chain of many list nodes, keeping a pointer to the front node only)

class LinkedList {
public:
 void add(int value);
 void insert(int index, int value);
 bool isEmpty() const;
 void remove(int index);
 int size() const;
 string toString() const;
 ...

private:
 ListNode* m_front; // NULL if list is empty
};

Page 1

CS106B Section 6 (Week 7)

CS 106B Sec
on 5 (Week 6)

1. Linked nodes (1).

 Draw a picture of what the given nodes would look like a"er the code executes.

Before / Code A�er

 a)

 list->next = new ListNode(3);

 b)

 list->next = new ListNode(3, list->next);

 c)

 list = new ListNode(4, list->next->next);

 d)

 list->next->next = NULL;

2. Linked nodes (2).

Write the code that will produce the given "a"er" result from the given "before" star�ng point by modifying links between

the nodes shown and/or crea�ng new nodes as needed. There may be more than one way to write the code, but do NOT

change any exis�ng node's data ,eld value. If a variable does not appear in the "a"er" picture, it doesn't ma.er what value

it has a"er the changes are made.

Before A�er

Page 2

CS106B Section 6 (Week 7)

CS 106B Sec
on 5 (Week 6)

Each of the following problems asks you to add a member func�on to the LinkedList class from lecture. In all cases, if

your func�on deletes a node from the list, free the associated memory for the node. Declare member func�ons as const if

appropriate, if they do not modify the state of the linked list. Generally, you should try to do these problems without

calling other member func�ons.

3. min.

Write a member func�on min that returns the minimum value in a linked list of integers. If the list is empty, it should throw

a string excep�on.

4. isSorted.

Write a member func�on isSorted that returns true if the list is in sorted (nondecreasing) order and returns false

otherwise. An empty list is considered to be sorted. Bonus: solve this problem both recursively and non-recursively. Which

solu�on do you like be.er?

5. countDuplicates.

Write a member func�on countDuplicates that returns the number of duplicates in a sorted list. The list will be in sorted

order, so all of the duplicates will be grouped together. For example, if a variable list stores the sequence of values below,

the call should return 7 because there are 2 duplicates of 1, 1 duplicate of 3, 1 duplicate of 15, 2 duplicates of 23 and 1

dupe of 40:

{1, 1, 1, 3, 3, 6, 9, 15, 15, 23, 23, 23, 40, 40}

6. stu&er.

Write a member func�on stu&er that doubles the size of a list by replacing every integer with two of that integer. For

example, if a variable list stores {1, 8, 19, 4, 17}, a"erward a call to this method, it should store {1, 1, 8, 8, 19, 19, 4, 4, 17,

17}.

7. deleteBack.

Write a member func�on deleteBack that deletes the last value (the value at the back of the list) and returns the deleted

value. If the list is empty, your method should throw a string excep�on.

8. split.

Write a member func�on split that rearranges the elements of a list so that all nega�ve values appear before all of the

non-nega�ves. For example, suppose a variable list stores the following sequence of values:

{8, 7, -4, 19, 0, 43, -8, -7, 2}

One possible arrangement (but certainly not the only one) a"er a call to this method would be:

{-4, -8, -7, 8, 7, 19, 0, 43, 2}

Do not swap data ,elds or create any new nodes to solve this problem; you must rearrange the list by rearranging the links

of the list. You also may not use auxiliary structures like arrays, ArrayLists, stacks, queues, etc, to solve this problem.

Page 3

CS106B Section 6 (Week 7)

CS 106B Sec
on 5 (Week 6)

9. removeAll.

Write a member func�on removeAll that takes an integer and removes all occurrences of that value. For example, if a

variable list contains the following values:

{3, 9, 4, 2, 3, 8, 17, 4, 3, 18}

The call of list.removeAll(3); would remove all occurrences of the value 3 from the list, yielding the following values:

{9, 4, 2, 8, 17, 4, 18}

If the list is empty or the value doesn't appear in the list at all, then the list should not be changed by your method. You

must preserve the original order of the elements of the list.

10. doubleList.

Write a member func�on doubleList that doubles the size of a list by appending a copy of the original sequence to the end

of the list. For example, if a variable list stores this sequence of values:

{1, 3, 2, 7}

and then we call this method, it should store the following values a"er the call:

{1, 3, 2, 7, 1, 3, 2, 7}

If the original list contains N nodes, then you should construct exactly N nodes to be added. You may not use any auxiliary

data structures to solve this problem (no array, Vector, stack, queue, string, etc). Your method should run in O(N) �me

where N is the number of nodes in the list.

11. rotate.

Write a member func�on rotate that moves the value at the front of a list of integers to the end of the list. For example, if

a variable called list stores the following sequence of values:

{8, 23, 19, 7, 45, 98, 102, 4}

The call of this method should move the value 8 from the front of the list to the back of the list, yielding this sequence of

values:

{23, 19, 7, 45, 98, 102, 4, 8}

The other values in the list should retain the same order as in the original list. If the method is called for a list of 0 or 1

elements it should have no e�ect on the list. You must solve the problem by rearranging the links of the list, so do not

construct any new nodes to solve this problem or change any of the integer values stored in the nodes.

12. reverse.

Write a member func�on reverse that reverses the order of the elements in the list. For example, if the variable list ini�ally

stores this sequence of integers:

{1, 8, 19, 4, 17}

It should store the following sequence of integers a"er reverse is called:

{17, 4, 19, 8, 1}

Page 4

CS106B Section 6 (Week 7)

	CS 106B Section 5 (Week 6)

