
CS 106B Sec
on 7 (Week 8)

This week is all about binary trees. Remember that the recursive structure of trees makes wri�ng recursive methods for

them very natural.

Recommended problems: #3, #5, #6, #7

1. Traversals.

 Write the elements of each tree below in the order they would be seen by a pre-order, in-order, and post-order traversal

a) b) c)

3

/ \

5 2

 / / \

 1 4 6

19

/ \

 47 63

/ \ \

 23 -2 94

 / \

 55 28

2

 \

1

/ \

7 6

 / \

 4 9

 / \ /

 3 5 8

2. BST Inser
on

Draw the binary search tree that would result from inser�ng the following elements in the given order.

a) Leia, Boba, Darth, R2D2, Han, Luke, Chewy, Jabba

b) Meg, Stewie, Peter, Joe, Lois, Brian, Quagmire, Cleveland

c) Kirk, Spock, Sco6y, McCoy, Chekov, Uhuru, Sulu, Khaaaan!

struct TreeNode {

 int data;

 TreeNode* left;

 TreeNode* right;

 ...

};

class BinaryTree {

public:

 member functions;

private:

 TreeNode* root; // NULL if empty

};

For each coding problem, you are to write a new public

member func�on for the BinaryTree class from lecture

that performs the given opera�on. You may de#ne addi�onal

private func�ons to implement your public members. For

func�ons that remove nodes, remember that you must not

leak memory. You can assume that there is a helper func�on

deleteTree that frees all memory associated with a given

subtree.

Page 1

This week is all about binary trees and hashing.

CS 106B Sec
on 7 (Week 8)

3. height.

Write a member func�on called height that returns the height of a tree. The height is de9ned to be the number of levels

(i.e., the number of nodes along the longest path from the root to a leaf). For example, an empty tree has height 0. A tree

of one node has height 1. A node with one or two leaves as children has height 2, etc.

4. countLe$Nodes.

Write a member func�on countLe$Nodes that returns the number of le? children in the tree. A le? child is a node that

appears as the root of the le?-hand subtree of another node. For example, the tree in Problem 1 (a) above has 3 le?

children (the nodes storing the values 5, 1, and 4).

5. isBalanced.

Write a member func�on isBalanced that returns whether or not a binary tree is balanced. A tree is balanced if its le? and

right subtrees are also balanced trees whose heights di@er by at most 1. The empty (NULL) tree is balanced by de9ni�on.

You may call solu�ons to other sec�on exercises to help you.

balanced balanced not balanced not balanced

8

/ \

4 9

 / \

 4 6

4

/ \

3 9

 /

 1

8

 /

 4

 / \

 2 7

4

/ \

3 9

 / \

 1 5

 /

 2

Page 2

CS 106B Sec
on 7 (Week 8)

6. removeLeaves.

Write a member func�on removeLeaves that removes the leaf nodes from a tree. A leaf is a node that has empty le? and

right subtrees. If a variable t refers to the tree below at le?, the call of t.removeLeaves(); should remove the four leaves

from the tree (the nodes with data 1, 4, 6 and 0). A second call would eliminate the two new leaves in the tree (the ones

with data values 3 and 8). A third call would eliminate the one leaf with data value 9, and a fourth call would leave an

empty tree because the previous tree was exactly one leaf node. If your func�on is called on an empty tree, it does not

change the tree because there are no nodes of any kind (leaf or not). Free the memory for any removed nodes.

Before call A?er 1st call A?er 2nd call A?er 3rd call A?er 4th call

7

/ \

3 9

/ \ / \

1 4 6 8

 \

 0

7

/ \

3 9

 \

 8

7

 \

 9

7 NULL

7. completeToLevel.

Write a member func�on completeToLevel that accepts an integer k as a parameter and adds nodes with value -1 to a

tree so that the 9rst k levels are complete. A level is complete if every possible node at that level is non-NULL. We will use

the conven�on that the overall root is at level 1, its children are at level 2, and so on. Preserve any exis�ng nodes in the

tree. For example, if a variable called t refers to the tree below and you make the call of t.completeToLevel(3); you should

9ll in nodes to ensure that the 9rst 3 levels are complete. No�ce that level 4 of this tree is not complete. Keep in mind that

you might need to 9ll in several di@erent levels. You should throw an integer excep�on if passed a value for k that is less

than 1.

Before call A?er call

17

/ \

83 6

 / \

 19 87

\ /

48 75

17

/ \

83 6

 / \ / \

 19 -1 -1 87

\ /

48 75

Page 3

CS 106B Sec
on 6 (Week 7)

3. Pointer tracing.

Pointers to arrays are di-erent in many ways from Vector or Map in how they interact with pass-by- value and the =

operator. To be2er understand how they work, trace through the following program. What is its output?

void print(int* first, int* second) {

 for (int i = 0; i < 5; i++) {

 cout << i << ": " << first[i] << ", " << second[i] << endl;

 }

}

void transmogrify(int* first, int* second) {

 for (int i = 0; i < 5; i++) {

 first[i] = 137;

 }

}

void change(int* first, int* second) {

 first = new int[5];

 second = new int[5];

 for (int i = 0; i < 5; i++) {

 first[i] = second[i] = 271;

 }

}

int main() {

 int* one = new int[5];

 int* two = new int[5];

 for (int i = 0; i < 5; i++) {

 one[i] = i;

 two[i] = 10 * i;

 }

 print(one, two);

 transmogrify(one, two);

 print(one, two);

 change(one, two);

 print(one, two);

 delete[] one;

 delete[] two;

 return 0;

}

4. Hashing (part 1).

Let’s say we have a class StRiNg where two StRiNgs are considered equal if they are equal, ignoring upper and lower

case. Other than that, they are the same as normal strings. Which of the following func�ons are legal hash func�ons for

StRiNgs? Which func�ons are good hash func�ons?

int hash1(StRiNg& s) {
 return 0;
}

int hash3(StRiNg& s) {
 int product = 1;
 for (int i = 0; i < s.length(); i++) {
 product *= tolower(s[i]);
 }
 return product;
}

int hash2(StRiNg& s) {
 int sum = 0;
 for (int i = 0;
 i < s.length(); i++) {
 sum += s[i];
 }
 return sum;
}

int hash4(StRiNg& s) {
 return (int) &s;
}

5. Hashing (part 2).

If our hash table has 6 buckets, diagram the result of pu8ng the following values into the hash table, using a hash func�on

that adds up the values of each le2er in the string (where ‘a’ is 1, ‘b’ is 2, etc.) and mods by the hash table length (6). If two

strings collide, put them into a linked list.

cabbage, baggage, deadbeef, cafe, badcab, feed

Page 2

CS 106B Section 7 (Week 8)

8.

9.

10.

Page 4

	CS 106B Section 7 (Week 8)

