
CS 106B Sec
on 8 (Week 9)

This week is about graphs with ver�ces and edges. The �rst couple pages are cheat sheets for graph terminology and

common search algorithms

Recommended problems: #4, #5

Extra prac�ce problems: 18.7, 18.12 (from Textbook)

graph: A data structure containing:

• a set of ver�ces V (some�mes called "nodes"),

• a set of edges E ("arcs"), where each is a connec�on between 2 ver�ces.

degree: number of edges touching a given vertex.

path: A path from vertex A to B is a sequence of edges that can be followed

star�ng from A to reach B.

• can be represented as ver�ces visited, or edges taken

neighbor or adjacent: Two ver�ces connected directly by an edge.

reachable: Vertex A is reachable from B if a path exists from A to B.

connected graph: A graph is connected if every vertex is reachable from every other.

cycle: A path that begins and ends at the same vertex.

• acyclic graph: One that does not contain any cycles.

• loop: An edge directly from a vertex to itself.

weight: Cost associated with a given edge.

• weighted graph: One where edges have weights (see graph adjacent).

directed graph: A graph where edges are one-way connec�ons.

undirected graph: A graph where edges don’t have a direc�on.

depth-#rst search (DFS): Finds a path between two ver�ces by exploring each possible path as far as possible before

backtracking

• O/en implemented recursively

breadth-#rst search (BFS): Finds a path between two ver�ces by taking one step down all paths and then immediately

backtracking.

• O/en implemented by maintaining a queue of ver�ces to visit.)

Dijkstra's algorithm: Finds paths between one vertex and all other ver�ces by maintaining informa�on about how to

reach each vertex (cost and previous vertex) and con�nually improving that informa�on un�l it reaches the best solu�on.

• O/en implemented by maintaining a priority queue of ver�ces to visit.

A* algorithm: A varia�on of Dijkstra's algorithm that incorporates a heuris�c func�on to priori�ze the order in which to

visit the ver�ces.

minimum spanning tree: the set of connected edges with the smallest total weight that covers every vertex in the graph

Kruskal’s algorithm: An algorithm to �nd the minimum spanning tree of a graph

Page 1

CS 106B Sec
on 8 (Week 9)

Depth-#rst search (DFS) pseudocode:

stack = Stack()

stack.push(newPath(startNode))

seen = Set();

while !stack.isEmpty():

 currPath = stack.pop()

 currState = last(currPath);

 if(currState is goal) return currPath;

 if(seen contains currState) continue;

 seen.add(currState);

 for nextState in getNextStates(currState)

 path = newPath(currPath, nextState);

 stack.push(path);

 }

}

Breadth-#rst search (BFS) pseudocode:

queue = Queue()

queue.enqueue(newPath(startNode))

seen = Set();

while !queue.isEmpty():

 currPath = queue.dequeue()

 currState = last(currPath);

 if(currState is goal) return currPath;

 if(seen contains currState) continue;

 seen.add(currState);

 for nextState in getNextStates(currState)

 path = newPath(currPath, nextState);

 queue.enqueue(path);

 }

}

Dijkstra's algorithm pseudocode:

pQueue = PriorityQueue()

pQueue.enqueue(newPath(startNode), 0)

seen = Set();

while !pQueue.isEmpty():

 currPath = pQueue.dequeue()

 currState = last(currPath);

 if(currState is goal) return currPath;

 if(seen contains currState) continue;

 seen.add(currState);

 for nextState in getNextStates(currState)

 path = newPath(currPath, nextState);

 pQueue.enqueue(path, getCost(path));

 }

}

A* algorithm pseudocode:

pQueue = PriorityQueue()

pQueue.enqueue(newPath(startNode),

 H(startNode, goal))

seen = Set();

while !pQueue.isEmpty():

 currPath = pQueue.dequeue()

 currState = last(currPath);

 if(currState is goal) return currPath;

 if(seen contains currState) continue;

 seen.add(currState);

 for nextState in getNextStates(currState)

 path = newPath(currPath, nextState);

 pQueue.enqueue(path, getCost(path) +

 H(nextState, goal);

 }

}

Note: A path in the above pseudocode is a Vector of ver�ces from the graph and a state is a vertex in the graph

Important parts of Stanford Graph library: (more online)

BasicGraph()

g.addEdge(v1, v2);

g.addVertex(vertex);

g.clear();

g.getEdge(v1, v2)

g.getEdgeSet()

g.getEdgeSet(vertex)

g.getNeighbors(vertex)

g.getVertex(name)

g.getVertexSet()

g.isConnected(v1, v2)

g.isEmpty()

g.removeEdge(v1, v2);

g.removeVertex(vertex);

g.size()

g.toString()

struct Vertex {

 string name;

 Set<Edge*> edges;

 double cost; // initially 0.0

 bool visited; // initially false

 Node* previous; // initially NULL

};

struct Edge {

 Vertex* start;

 Vertex* finish;

 double cost;

 bool visited; // initially false

};

Page 2

We present you with the general pseudo-code for all graph search algorithms we’ve studied this quarter. The major difference between them is the actual structure of the “todo list”. In DFS the list is a stack, in BFS it is a queue, and in Dijkstra’s Algorithm it is a priority queue.

CS 106B Sec
on 8 (Week 9)

Graph 1: Graph 2: Graph 3:

Graph 4: Graph 5: Graph 6:

1. Depth-First Search (DFS).

Write the paths that a depth-�rst search would �nd from vertex A to all other ver�ces in the following graphs. If a given

vertex is not reachable from vertex A, write "no path" or "unreachable".

• in Graph 1

• in Graph 6

2. Breadth-First Search (BFS).

Write the paths that a breadth-�rst search would �nd from vertex A to all other ver�ces in the following graphs. Which

paths are shorter than the ones found by DFS in the previous problem?

• in Graph 1

• in Graph 6

3. Minimum weight paths.

Which paths found by DFS and BFS on Graph 6 in the previous problems are not minimal weight? What are the minimal

weight paths from vertex A to all other nodes? (Just inspect the graph manually.)

4. isReachable.

Write a func�on named isReachable that returns true if a path can be made from the vertex v1 to the vertex v2 , or false if

not. If the two ver�ces are the same, return true. Use either BFS or DFS, described in the reference above. Bonus: do this

problem twice with both BFS and DFS.

bool isReachable(BasicGraph& graph, Vertex* v1, Vertex* v2) { ...

Page 3

CS 106B Sec
on 8 (Week 9)

5. isConnected.

Write a func�on named isConnected that returns true if a path can be made from every vertex to any other vertex, or

false if there is any vertex cannot be reached by a path from some other vertex. An empty graph is de�ned as being

connected. You can use the isReachable func�on from the previous problem to help solve this one.

bool isConnected(BasicGraph& graph) { ...

6. #ndMinimumVertexCover.

 Write func�on named #ndMinimumVertexCover that returns a set of vertex pointers iden�fying a minimum vertex cover.

A vertex cover is a subset of an undirected graph’s ver�ces such that each and every edge in the graph is incident to at least

one vertex in the subset. A minimum vertex cover is a vertex cover of the smallest possible size. Consider the following

graph on the le/:

Graph Vertex Covers

Each of the four illustra�ons a/er it on the right shows some vertex cover (shaded nodes are included in the vertex cover,

and hollow ones are excluded). Each one is a vertex cover because each edge touches at least one vertex in the cover. The

two vertex covers on the right are minimum vertex covers, because there is no smaller vertex cover.

Understand that because the graph is undirected, that means for every edge that leads from some vertex v1 to v2, there

will be an edge that leads from v2 to v1. If there are two or more minimum vertex covers, then you can return any one of

them. Think of this as a backtracking problem. The implementa�on of this func�on should consider every possible vertex

subset, keeping track of the smallest one that covers the en�re graph. Try all possible vertex combina�ons using a "choose-

explore-unchoose" pa>ern and keep track of state along the way.

Set<Vertex*> findMinimumVertexCover(BasicGraph& graph) { ...

Page 4

	CS 106B Section 8 (Week 9)

