
Chris and Chris Handout #5

CS 106B September 28, 2016

Assignment 1: Fauxtoshop
Assignment by Cynthia Lee; inspired by Mark Guzdial and Barbara Ericson; name by Eric Yurko and Arun Debray.

Due: Friday, October 7th at 12:00pm

In this assignment, you’ll write your own photo editor with advanced features like green
screen, “scatter” blur effect, and edge detection. You’ll be making extensive use of our
week-1 topics: console interaction and the Grid ADT (look for our other ADTs to show up
on assignment 2). For extra spice, there is one easy mouse click interaction. This document
is long, but don’t let that overwhelm you! (Much of it is just screenshots anyway.) The code
is relatively straightforward and I carefully calibrated it to the Game of Life assignment we
have used in previous years. You might even have some extra time, in which case there are
plenty of opportunities for artistic expression and creative extensions (extra credit). I look
forward to seeing what you do!

The assignment has several purposes:

1. To stress the notion of problem decomposition and taking a thoughtful, organized
approach to program function and style.

2. To become more familiar with C++ strings and console I/O.
3. To gain practice with the Grid data structure.
4. To evaluate use cases for pass-by-reference parameters vs pass-by-value parameters,

and when to use const.

CONSOLE WINDOW AND GRAPHICS WINDOW
Your program should use the console to support basic menu selections, file name input,
and other interactions with the user. Below is a screenshot of the initial welcome screens:

You’ll notice there are two windows: Console and a Fauxtoshop window. In the
screenshots throughout this document, you will see that what you should print in the

 2

window labeled “Console” is in black font, and what the user types is in blue font. The
“Fauxtoshop” window is created using the Stanford library graphics class GWindow (refer to
Stanford library documentation). Very important note: your program should only ever
declare and use one GWindow, and its lifespan should span the entire duration of the
program, or else your program may crash. We have declared one in main for you in the
starter code, thereby making its lifespan the duration of the program. You should not edit
the main code or make other GWindow objects.

MAIN MENU SEQUENCE
This section outlines the sequence of interactions that take place in the main menu in the
console window. Later sections will explain other important components of the program,
and detail the behavior of each of the four menu options.

First, greet the user with the welcome message shown, then ask the user to specify an
image file name. The image files should be located in the “res” directory (sibling directory
of your “src” and “lib” directories in the project directory). When images are located there,
QT will handle making them available to your code without additional path (directory
location) information.

To open the image file, declare a GBufferedImage object, and then call the
openImageFromFilename function (provided in the starter code) to open the file with the
image file name the user specified. This function returns a Boolean value, where true
indicates success. You should re-prompt the user for a filename if this function returns
false. After the image is opened, you’ll want to resize the GWindow to be the exact same
size as the image, and then add the image to the GWindow by calling add	(the code shown
below assumes your GBufferedImage object is called img and your Gwindow object is
called gw, but you could use different names):

gw.setCanvasSize(img.getWidth(),	img.getHeight());	
gw.add(&img,0,0);	//1	

It is important that the GBufferedImage	object you add to the GWindow not cease to
exist (go out of scope) after you add it to the GWindow. For example, if you make a helper
function that declares a GBufferedImage	object and adds it to the GWindow, then returns
(causing the local variable of the GBufferedImage to go out of scope and cease to exist),
this could cause your program to crash! The starter code declares one GBufferedImage in
main, and if you use that object throughout the program (by changing the contents, not
declaring a new one to add to the GWindow—though you may declare temporary ones that
you don’t add to the GWindow), you’ll avoid any trouble. Another way to avoid trouble is
that if you call gw.clear(), it’s ok for any GBufferedImage objects that were added to
the window to cease to exist, because the GWindow has then “forgotten” about them.

1 You’ll notice there is an & before img. This is not the same kind of & as reference parameters. We’ll talk

about it later in the quarter. For now, just copy this line of code when adding images to a GWindow.

http://stanford.edu/~stepp/cppdoc/GWindow-class.html

 3

Below is a screenshot2 showing the next steps of the interaction after the image is opened
and added to the window. It shows a menu of filter effect options and asks the user to
select one (if the user enters something other than a valid menu choice, reprompt with the
entire menu text starting with “Which image filter…”). Each menu option has additional
input(s) required of the user, which are explained in each menu option section below.

After the filter effect is complete and displayed in the window, you should ask the user if
they want to save the image3, as shown in the screenshot below. To save the image file,
call the saveImageToFilename function (provided in the starter code) with the image file
name the user specified. This function returns a Boolean value, where true indicates
success. You should re-prompt the user for a file name if this function returns false.

2 Some of the examples shown in this document may take a very long time to render, depending on the speed

of your computer. When opening larger image files than your debugger can handle well, it may appear that

the program has frozen. If this happens to you, try working with smaller images.
3 The saved image file will not save in the input images’ “res” directory, where you might expect! Instead, it

will save in the build directory created by the compiler to hold its intermediate work and the final compiled

executable. The build directory will be found as a sibling directory of the “Fauxtoshop” project directory, and

it will have a name something like “build-Fauxtoshop-Desktop_Qt_5_2_0_MinGW_32bit-Debug”. Usually

you should ignore the build directory and not mess with it, but it’s fine to look in there for your saved image

files.

 4

After offering to save the image, clear the GWindow object so it is blank again (call its
clear method). Print one blank line. Then repeat the entire main menu sequence again (as
shown in the screenshot below), until the user enters an empty filename to quit the
program.

WORKING WITH IMAGES
For each of the filter effects in the menu options, you’ll want to iterate over the pixels of the
image and inspect or change them. Before doing any such inspection or change of pixels,
convert your GBufferedImage object into a Grid<int> format (yay, ADTs!). The
conversion step is as follows (where img is the name of the GBufferedImage object; yours
could have a different name):

 Grid<int>	original	=	img.toGrid();	

The individual pixels (row/col entries) of the Grid are integers representing RGB values.
You can read about the RGB color scheme in detail on Wikipedia or RGBWorld, but the
basic idea is that there are three separate values packed into one int: a value between 0
and 255 representing how much Red, a value between 0 and 255 representing how much
Green, and a value between 0 and 255 representing how much Blue. The red, green, and
blue combine together to make one particular pixel’s color. By varying the red, green, and
blue values, we can make all the colors of the rainbow. It’s a slightly different version of
the Primary Colors concept you learned as a kid. In the starter code, three color values are
defined for you as constants4:

4 These numbers are written in base 16 (called “hexadecimal”), which you don’t need to worry too much

about. They still behave as any other const variable of type int. For the curious: The first two digits

https://en.wikipedia.org/wiki/RGB_color_model
https://www.rgbworld.com/color.html

 5

static	const	int				WHITE	=	0xFFFFFF;	
static	const	int				BLACK	=	0x000000;	
static	const	int				GREEN	=	0x00FF00;	

We have a nice helper function provided for you in the Stanford libraries that separates the
pixel ints into their individual RGB components for you (it’s a nice example of “returning”
three values using pass-by-reference!). Here is an example for one pixel (where original
is the name of a Grid<int> object, and row and col are integers; as usual, you may
choose different names):

int	pixel	=	original[row][col];	
int	red,	green,	blue;	
GBufferedImage::getRedGreenBlue(pixel,	red,	green,	blue);	//5	

You should not use the GBufferedImage methods such as setColor or setRGB that set
individual pixels in the image. Instead, make all the changes you want in a Grid<int>
object, and then change the image all at once by calling the img.fromGrid (where img is
the name of your GBufferedImage instance), which takes a Grid<int> as its argument.
There are two reasons for this requirement: one is efficiency, and the other is to get you to
practice using the Grid ADT by doing looping and operations there rather than in the
image object directly.

RGB COLOR “DIFFERENCE” CALCULATION
For both the edge detection and green screen effects, your program will need to have a
way of calculating the “difference” between two colors. There are a number of ways to do
this, and in fact exploring alternate calculations could be one of the extensions you do for
this assignment.

To earn points for the basic assignment you’ll need to precisely implement our algorithm
(and not some other algorithm, however reasonable).

1. Use the GBufferedImage::getRedGreenBlue method described above to
separate the pixels into their RGB components.

represent red, the second two digits represent green, and the third two digits represent blue. So in the case of

white, the red, green, and blue components all have the maximum value of 255 (base 10) or “FF” (base 16).

On the other hand, green has the maximum value of green (the middle two digits are “FF”) and 0 of red and

blue.
5 The GBufferedImage::getRedGreenBlue	syntax might look new or strange to you. The “::” is called the

scope resolution operator, and it indicates that the getRedGreenBlue function can be found in the

GBufferedImage class, but that you do not need an instance of the class to use the function (that is, it is a

static function in the same sense of the word static that you may have seen in Java). You don’t really need to

worry about exactly what this means until we talk about it later in the course. Just use the function as if its

“full name” is GBufferedImage::getRedGreenBlue.

 6

2. Take the difference between each pair of RGB values (difference between the two
reds, difference between the two blues, and difference between the two greens)

3. Take the absolute values of each difference so you have the magnitude of each
difference. Note the <math> standard library has an integer abs() function.

4. Then take the max of those three differences (there is also a max() function that
takes two values at a time).

That is going to be our definition of difference between pixels. Note, all calculations should
be done using type int, not double/float.

MENU OPTION 1: SCATTER
For this filter, your program will take the original image and “scatter” its pixels, making
something that looks like a sand drawing that was shaken.

First, ask the user to provide a “radius” (it’s not quite a radius, mathematically) of how far
we should scatter pixels. The value should be an integer between 1 and 100, inclusive
(otherwise reprompt).

Then create a new image Grid that has the same dimensions as the original image Grid.
Next, for each pixel in the new image, randomly select a pixel from nearby that row and
column in the original image that will provide the color for this pixel in the new image.
You will randomly select the pixel by randomly selecting a row that is within radius of the
current row, and randomly selecting a column that is within radius of the current column.
If the randomly selected row or column is out of bounds of the Grid of the original image,
you should randomly select again until you get an in-bounds pixel.

Here is a screenshot of the Scatter filter effect complete, waiting for the user to respond to
the prompt about saving the file (notice we haven’t cleared the window yet):

 7

MENU OPTION 2: EDGE DETECTION
For this filter, your program will create a new black and white image of the same size as
the original, where a given pixel is black if it was an edge in the original image, and white
if it was not an edge in the original image.

First, ask the user for a threshold that controls how different two adjacent pixels must be
from each other to be considered an “edge.” This should be a positive (nonzero) integer
value (otherwise re-prompt). Then, loop over each pixel and determine if it is an edge or
not.

A pixel is defined as an “edge” if at least one of its neighbors has a difference of greater
than threshold from it. The neighbors are the 9 pixels (including self) immediately adjacent
or diagonal from the current “self” row/column of the Grid. So if my distances to my
neighbors are: 9, 8, 5, 3, 3, 0 (self), 4, 7, 8, 7, then I would only be considered an edge if
the threshold were less than 9 (the greatest difference between me and one of my
neighbors). Remember that pixels near edges and corners may not have all 9 neighbors, so
take care not to go out of bounds. The Grid class has an inBounds method that will be
helpful.

Here is a screenshot of the Edge Detection filter effect complete, waiting for the user to
respond to the prompt about saving the file (notice we haven’t cleared the window yet):

 8

MENU OPTION 3: GREEN SCREEN
For this filter, your program will paste a “sticker” image on top of a “background” image,
but ignore any part of the sticker that is close to pure green in color. This technique is used
widely in filmmaking—actors are filmed acting on a stage that is painted bright green and
then their forms are later digitally placed on top of some other scenery.

The image that the user specifies in the main menu will be the background image, so the
first thing you should do for this filter effect is ask the user to specify a new image file name
to be the sticker image. The prompt will work in a similar fashion (reprompt if open fails),
but you will not offer the option to enter a blank filename to indicate ending the program.
Open the image file and convert it to a Grid in the same way you did with the original
background image.

Next, we need to know how much tolerance we should have for green that isn’t pure green
(0x00FF00). That way if there are slight shadows or other variations on the green part of the
image, the green screen effect will still work as we want it to. Prompt the user to enter a
value, and then you’ll use that as a threshold in conjunction with the same pixel color
difference calculation that we used in edge detection (described above).

Next, we need to know where to place the sticker image. Ask the user to specify a location
as (row,col) in exactly that format, with row and col being non-negative integers (otherwise
reprompt). The row and column specified will be the background location where you will
place the upper left corner of the sticker. The only variation from that exact (row,col)
format that you should allow is for the user to enter nothing (just hits return), in which case

 9

you should allow the user to specify the location use a mouse click. The starter code
includes a function that receives mouse clicks and reports the location to you as row and
column. You should report back to the user the detected click location.

Now we are ready to place the image in the location specified. Any pixel on the sticker
image that is difference greater than threshold from pure green will be copied onto the
background, otherwise that pixel will be ignored and the background pixel there will
remain untouched. You should allow the sticker image to be cut off on the bottom or right
edge(s) if it cannot completely fit on the background.

Here is a screenshot of the Green Screen filter effect complete, waiting for the user to
respond to the prompt about saving the file (notice we haven’t cleared the window yet):

Here is a screenshot of the Green Screen filter effect complete in the case where the user
clicked to give the sticker location:

 10

MENU OPTION 4: COMPARE IMAGES
This is the least exciting of the menu options, and does not produce any visual effect.
However, it will help you debug your code by comparing your output to the sample
outputs provided on the course website. For this menu option, ask the user to name
another image file (open it as a GBufferedImage in the same way described in Green
Screen section), and you will count how many pixels differ between the two. This would
be easy to do by iterating over the pixels yourself, but it’s actually even easier than that—
there is a countDiffPixels method in the GBufferedImage class that does all the work
for you. Use it, then report the result to the user. Print a nonzero count as “These	images	
differ	 in	 _	 pixel	 locations!” or print “These	 images	 are	 the	 same!” as
applicable. You will continue to display the original image. (It will be a bit superfluous
when the main menu asks the user if they want to save the resulting image in this case, but
that’s okay.) Here is a screenshot showing this menu option in action:

GRADING AND GENERAL REMARKS

 11

Please observe the following to avoid grade penalties:

• Decomposition: On this assignment part of your Style grade comes from making
intelligent decisions about decomposing the problem into well-designed parts. Your
functions should perform distinct and clearly delineated purposes, be clearly
named, and not too long.

• Parameters: As much as possible, pass collections and objects by reference, and
const reference when applicable, because passing them by value makes an
expensive copy.

• Collections: Use the Grid and other Stanford library tools. Do not use pointers,
arrays, or STL containers on this program. You should not be explicitly allocating or
freeing any memory for this assignment (goes along with no pointers).

• Style guide: Refer to the CS106B+X style guide for further instructions.
• Citation: If you refer to any non-class resource (person, website, your own previous

coding projects that are substantially similar), you need to make a clear citation of
that fact in the code. Please refer to the Honor Code for CS106A+B+X for more
detail.

• Project size: While high quality solutions can vary widely in length, some students
find it helpful to know, as a general point of reference, how many lines of code our
solution is. Our solution is about 350 lines of code, including #include, comments,
etc.

EXTENSIONS SUGGESTIONS
For all of these extensions, make their use go through a new top level menu item, so
autograders can still test your program using menu items 1-4 and expect them to perform
exactly according to specification. So, for example, if you change the behavior of green
screen, make a new top level menu item 5 titled something like “Improved green screen.”

Edge detection extension suggestions:

• As mentioned in the section on difference calculation, you may also want to
experiment with alternate formulas for calculating the difference in color between
two pixels. The edges will be sharper if you select a difference calculation where
difference(a, b) does not equal difference(b, a) (for nonzero differences; i.e.,
produce a signed output), because then only one of the two pixels will decide it
meets threshold to be an edge. One reasonable idea for a distance calculation
would be Euclidean distance between RGB values treated as vectors of dimension 3.

• There are more advanced edge detection algorithms that you could use, especially if
you are experienced in linear algebra. Wikipedia page for edge detection is a good
place to start. Hough Transform is a really cool one that specializes in finding
straight lines or circles (google it).

Green screen extension suggestions:
• Let the user specify an RGB value to use instead of green (e.g., sometimes you’ll see

blue screen instead of green screen in filmmaking). This could be done by typing the

http://web.stanford.edu/class/cs106b/handouts/styleguide.html

 12

RGB value, or, if you initially show the entire sticker in the window, allowing the
user to click a pixel to select the color.

• Ask the user specify a resizing factor to scale the sticker image up or down for a
better fit to the scene.

• Allow the user to rotate the sticker image or flip horizontal/vertical.
Scatter extension suggestions:

• There are many more interesting blur/smudge type algorithms, such as incorporating
an average of neighboring pixels (for some radius of neighbor), or Gaussian blur.
Research and implement one of these algorithms. To help you implement Gaussian
blur, the starter code includes a function that calculates a Gaussian kernel for you
(that’s the trickiest part). I’ll post some instructions for using the kernel to the class
website.

• Let the user specify one specific area to scatter, rather than the whole image. This
could be useful for anonymizing images by blurring a faces or private data.

General extension suggestions:

• Create composite filters that automate multi-step operations (e.g., first do edge
detection on an image that you will then use as a sticker in a particular place, etc.).
You could even insert pauses between the executions of each step, so it looks like a
simple animation. To add a pause, use the function pause(miliseconds);.

• Add various color effects filters: grayscale, b&w, sepia tone, negative. All of these
are very simple manipulations of the RGB values for each pixel.

• Allow users to flip horizontal/vertical and rotate the image. Resize is another option,
but unlike the others it does not preserve each pixel exactly, so you’ll need to think
through the algorithm for that (there are lots of nice and easy options—google to
research).

• A really neat trick that is surprisingly easy is steganography combination of two
images. You’ll want to include an option to both encode a message/image, and
recover the secretly encoded message/image.

• Add a GUI menu interface (must be in addition to our console-based menu
interface).

• Add brush/pen/pencil drawing on the photo using the mouse.
• Add bucket fill, or bucket fill with a tolerance for non-exact colors (using your color

difference calculation again). The algorithm to fill an area is something we’ll cover
later in the quarter, but you could read ahead if you are interested in trying this.

DELIVERABLES
The following four files must be submitted to your CA:

• Code:
o fauxtoshop.cpp	

• Art:

https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Steganography

 13

o art1.jpg, art2.jpg, art3.jpg: Three images that you created using your
code (use the save resulting image option to save the file). You should use
several of the filter effects in combination (e.g., multiple green screen
stickers, one of them edges only or scattered), by saving interim files and
reading them in as input to the next step. Although you may use some of the
images provided in the starter code to generate these three pieces of artwork,
they must each include some of your own images that were not part of the
starter code (e.g., your own photos, things you sourced from the internet).
You may use some of your extensions (if any) in making these three artwork
files. 	

• Optional: 	
o Any additional image files that would be needed for the grader can operate

your extensions options (if any). Be sure your code includes comments
and/or cout statements that make it clear to the grader how to operate your
extensions.	

