
CS106B Final Review
Ashley Taylor, Zoe Robert

Today’s Session Overview
● Logistics
● Classes and Structs
● Sorting
● Pointers
● Memoization
● Linked Lists
● Hashing
● Trees
● Binary Heap
● Binary Search Trees
● Graphs
● BFS and DFS
● Dijkstra and A*
● Minimum Spanning Tree

Ashley

Zoe

Anton

Logistics

Final Logistics

● Monday December 12, 8:30-11:30am
● Split into two locations based on last name:

○ A-G: Cubberley Auditorium
○ H-Z: Dinklespiel Auditorium

● Open books, open notes, open mind (but closed computer)
● Pencils and pens accepted

What’s on the final

● Everything is fair
game!

● Will be weighted
to second half of
the course and on
material done in
assignments

Classes/Structs!

Classes/Structs

Structs have fields, a good way to bundle information together

struct Course {
 int numStudents;
 string professor;
 string name;
};

Course cs106b;
cs106b.numStudents = 300;
cs106b.professor = “Chris”;

int numStudents

string professor

string name

Classes/Structs

Classes are structs with
encapsulation

Example: PQueue

private fields, public
methods that affect fields

Implement methods in
.cpp file

class Course {
 public:
 void addStudent();
 string getInstructor();
 private:
 int numStudents;
 string professor;
 string name;
};

Course cs106b;
cs106b.addStudent();

Sorting

Sorting: Insertion Sort

Works by inserting one element at a time into the sorted list

Sorted list starts as a list of size 1 with the first element in the
list, then for all the other elements in the list, we insert each
into its proper place in the sorted list

Runtime: O(N^2)

Sorting: Selection Sort

Find the smallest element in the list, and swap it with the
leftmost element in the list

Continue by looking at the remaining (unsorted elements)

Runtime: O(N^2)

Sorting: Merge Sort

Split the array into two smaller arrays

Base case: an array of size 1 is trivially sorted

Recursive step: split into two arrays of size (N/2) that we call
mergeSort on, then merge the two sorted arrays together

Runtime: O(N log N)

Sorting: QuickSort

Choose an element as a “pivot element”

For all the other elements in the array, split them to the left of
the pivot (if they’re smaller than the pivot) or right (if they’re
greater). The pivot is now in the correct spot

Recurse on the two arrays on either side of the pivot

Expected: O(N log N)
Worst case: (e.g. picking the smallest element each time) O(N^2)

Pointer Traces

Pointers
You can think of pointers like an address
Building *postOffice = new Building();

The value of postOffice is an address, like 531 Lasuen Mall (if
you cout postOffice you would get 531 Lasuen Mall).

If you dereference
or travel to the
address specified by
postOffice, you get to
the actual post office

Pointers - operators to know

Always declared with a * to the right of the type it stores
Read the pointer right to left:
 int **ptr - ptr is a pointer to a pointer to an int

Operators:
 *postOffice - dereferences ptr; goes to the object it stores
(travel to the postOffice)
 &postOffice - gets the address of a variable (doesn’t need to
be a pointer). The type of the expression is always a pointer to the
type of the variable (since postOffice is a Building *, this is
Building **)

Pointers and Arrays

When you declare an array, that is also a pointer to the first
(0th) element in the array

int arr[2];
int *pointer = arr; // pointer points to first
element of arr
//the next lines are equivalent
arr[1] = 3;
pointer[1] = 3; // only works because pointer
secretly points to an array; if it was just one
int, would crash

Pointer trace example

struct Quidditch {
 int quaffle;
 int *snitch;
 int bludger[2];
};

struct Hogwarts {
 int wizard;
 Quidditch harry;
 Quidditch *potter;
};

Pointer trace example
Quidditch * hufflepuff(Hogwarts * cedric) {
 Quidditch *seeker = &(cedric->harry);
 seeker->snitch = new int;
 *(seeker->snitch) = 2;
 cedric = new Hogwarts;
 cedric->harry.quaffle = 6;
 cedric->potter = seeker;
 cedric->potter->quaffle = 8;
 cedric->potter->snitch =
 &(cedric->potter->bludger[1]);
 seeker->bludger[0] = 4;
 return seeker;
}

void gryffindor() {
Hogwarts *triwizard = new
Hogwarts[3];
triwizard[1].wizard = 3;
triwizard[1].potter = NULL;
triwizard[0] = triwizard[1];
triwizard[2].potter =
 hufflepuff(triwizard);
triwizard[2].potter->quaffle = 4;
}

Pointer trace example
Hogwarts *triwizard = new Hogwarts[3];

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
?

int wizard =
?

int wizard =
?

Quidditch
harry
int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch
harry
int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch
harry
int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = ?

Quidditch *
potter = ?

Quidditch *
potter = ?

Pointer trace example
triwizard[1].wizard = 3;

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
?

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = ?

Quidditch *
potter = ?

Quidditch *
potter = ?

Pointer trace example
triwizard[1].potter = NULL;

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
?

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = ?

Quidditch *
potter = NULL

Quidditch *
potter = ?

Pointer trace example
triwizard[0] = triwizard[1];

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
3

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Pointer trace example
triwizard[2].potter = hufflepuff(triwizard);

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
3

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Pointer trace example
Quidditch *seeker = &(cedric->harry);

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
3

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

Pointer trace example
seeker->snitch = new int;

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
3

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = ?

Pointer trace example
*(seeker->snitch) = 2;

Stack (gryffindor): Heap:

Hogwarts *
triwizard

int wizard =
3

int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Pointer trace example
cedric = new Hogwarts;

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter = ?

Pointer trace example
 cedric->harry.quaffle = 6;

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter = ?

Pointer trace example
 cedric->potter = seeker;

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= ?

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter =

Pointer trace example
cedric->potter->quaffle = 8;

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= 8

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter =

Pointer trace example
 cedric->potter->snitch = &(cedric->potter->bludger[1]);

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= 8

int *snitch
=

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter =

Pointer trace example
seeker->bludger[0] = 4;

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= 8

int *snitch
=

int bludger

4 ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter = ?

Stack (hufflepuff):

Hogwarts *
cedric

Quidditch *
seeker

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter =

Pointer trace example
return seeker / triwizard[2].potter = hufflepuff(triwizard);

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= 8

int *snitch
=

int bludger

4 ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter =

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter =

Pointer trace example
triwizard[2].potter->quaffle = 4;

Stack (gryffindor): Heap:
Hogwarts *
triwizard int wizard =

3
int wizard =
3

int wizard =
?

Quidditch harry

int quaffle
= 4

int *snitch
=

int bludger

4 ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch harry

int quaffle
= ?

int *snitch
= ?

int bludger

? ?

Quidditch *
potter = NULL

Quidditch *
potter = NULL

Quidditch *
potter =

int = 2

Quidditch harry

int quaffle
= 6

int *snitch
= ?

int bludger

? ?

int wizard =
?

Quidditch *
potter =

Memoization

Memoization

Memoization caches or saves information that you’ve already calculated to make
your code run more efficiently

Usually used with recursion

Memoization - Example

Let’s say you have a chocolate bar that is 1 unit wide and n units long. How many
ways can we break this chocolate bar if we can make pieces 1, 2, or 3 pieces
long?

Assume that an empty bar can be broken in 1 way

Naive Solution - Chocolate (without Memoization)

int numWaysToBreak(int length) {
 if (length < 0) {
 return 0;
 } else if (length == 0) {
 return 1;
 }
 return numWaysToBreak(length - 1) +
 numWaysToBreak(length - 2) +
 numWaysToBreak(length - 3);
}

Why Memoization

Let’s say we’re trying to break a chocolate bar of size 4. We end
up calculating numWaysToBreak(2) twice (once as part of the
call for numWaysToBreak(3) and once as numWaysToCall(4)).

We calculate numWaysToBreak(1) FOUR times (once as part of
numWaysToBreak(1), once as numWaysToBreak(2), and twice as
numWaysToBreak(3)). A lot of wasted work...

Chocolate With Memoization

// create a helper with the cache
int numWaysToBreak(int length) {
 Map<int, int> cache;
 return numWaysToBreak(length, cache);
}

Chocolate with Memoization

int numWaysToBreak(int length, Map<int, int> & cache) {
 if (length < 0) {
 return 0;
 } else if (length == 0) {
 return 1;
 } else if (cache.containsKey(length)) {
 return cache[length];
 }
 int result = numWaysToBreak(length - 1) +
 numWaysToBreak(length - 2) +
 numWaysToBreak(length - 3);
 cache[length] = result;
 return result;
}

LinkedLists

LinkedList Tips

● Draw lots of pictures! Make sure you know exactly where
you want things to point, and draw out every step (you want
to always have a pointer to everything you want to access)

● Make sure you delete a node when you don’t need it
anymore (but after you saved its next)

● Good test cases for your list: empty list, list of size 1, list of
size 2, list of size 3; try adding/deleting from the beginning,
middle, and end

Doubly-Linked List
Previously, we’ve been working with a singly-linked list, where
each node has a single next pointer.

Now we’re going to implement a doubly-linked list where each
node has a next and a prev pointer: (we assume a constructor
of DoubleNode(value, prev, next))

struct DoubleNode {
 string value;
 DoubleNode *next;
 DoubleNode *prev;
};

Our Sorted DoublyLinkedList class

class DoublyLinkedList {
 public:
 void add(String & elem);
 void delete(String & elem);
 int findPosition(String & elem);
 private:
 DoubleNode *head;
 DoubleNode *tail;
};

Adding to our sorted doubly linked list

● Empty list: head = tail = new node
● New node is less than head: head will be new node; new

node’s next will point to head; old head’s prev = new head
● New node is greater than tail: tail will be new node; new

node’s previous will point to old tail; old tail’s next points to
new tail

● Inserting into the middle of the list (see next slide)

Inserting into the middle of the list

a b d

head

tail

c

Inserting into the middle of the list

a b d

head

tail

c

Inserting into the middle of the list

a b d

head

tail

c

Inserting into the middle of the list

a b d

head

tail

c

Adding to our sorted doubly linked list
void DoublyLinkedList::add(String &elem) {
 // nothing in the list or smallest value in list
 if (head == null || head->value > elem->value) {
 if (head != NULL) {
 head->prev = new DoubleNode(elem, NULL, head);
 head = head->prev;
 } else {
 head = tail = new DoubleNode(elem, NULL, NULL);
 }
 } else if (tail->value <= elem->value) {
 // elem is greatest element in list
 tail->next = new DoubleNode(elem, tail, NULL);
 tail = tail->next;
 } // finding the correct spot is on the next page

Adding to our sorted doubly linked list
void DoublyLinkedList::add(String &elem) {
 // continued from previous page
 else {
 DoubleNode *curr = head;
 while (curr->value < elem) {
 curr = curr->next;
 }
 DoubleNode *toInsert = new DoubleNode(elem, curr->prev, curr);
 DoubleNode *prev = curr->prev;
 curr->prev = toInsert;
 //make sure that the node before inserted points to inserted
 prev->next = toInsert;
 }
}

Finding the position of an element
void DoublyLinkedList::findPosition(String &elem) {
 int position = 0;
 DoubleNode *curr = head;
 while (curr != NULL) {
 if (curr->value == elem) {
 return position;
 }
 curr = curr->next;
 position++;
 }
 return -1; // not found
}

Deleting from our sorted doubly linked list
void DoublyLinkedList::delete(String &elem) {
 if (head == NULL) {
 throw str(“This list is empty”);
 }
 if (head->value == elem) {
 DoubleNode *trash = head;
 head = head->next;
 if (head == NULL) {
 tail = NULL;
 } else {
 head->prev = NULL;
 }
 delete trash;
 return;
 }

Deleting from our sorted doubly linked list
void DoublyLinkedList::delete(String &elem) {
 // look for node to delete
 DoubleNode *curr = head;
 while (curr != tail && curr->value < elem) {
 curr = curr->next;
 }
 if (curr->value != elem) return; // not found
 if (curr == tail) {
 DoubleNode *trash = tail;
 tail = tail->prev;
 tail->next = NULL;
 delete trash;
 }

Deleting from our sorted doubly linked list
void DoublyLinkedList::delete(String &elem) {
 else { // not deleting the tail
 ListNode *trash = curr;
 curr->prev->next = curr->next; // previous points to next
 curr->next->prev = curr->prev; // next points to previous
 delete trash;
 }
}

Extra Practice

● Traverse (i.e. read every element in a LinkedList) without
notes (you can use the size function of your PQueue for
reference)

● Add an element to a LinkedList (you can use the add
function of your PQueue for reference)

● Delete an element from a LinkedList (use changePriority of
PQueue for reference)

● Check out the section six handout for lots of practice

Hashing!

Hash Functions

Basic definition: a hash function maps something (like an int or
string) to a number

A valid hash function will always return the same number given
two inputs that are considered equal

A good hash function distributes the values uniformly over all
the numbers

Hash Functions: Good or Bad

struct BankAccount {
 int routingNumber;
 int amount;
};

Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return randomInteger(0, 100);
}

Hash Functions: Good or Bad

struct BankAccount {
 int routingNumber;
 int amount;
};

Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return randomInteger(0, 100);
}

INVALID - given the same bank
account, might return any
random number

Hash Functions: Good or Bad

struct BankAccount {
 int routingNumber;
 int amount;
};

Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return account.routingNumber % 2;
}

Hash Functions: Good or Bad

struct BankAccount {
 int routingNumber;
 int amount;
};

Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return account.routingNumber % 2;
}

VALID but Not Good - will
generate the same result for
two accounts that are
considered the same, but not
uniformly spread over all the
integers

Hash Functions: Good or Bad

struct BankAccount {
 int routingNumber;
 int amount;
};

Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return account.amount % 100;
}

Hash Functions: Good or Bad

struct BankAccount {
 int routingNumber;
 int amount;
};

Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return account.amount % 100;
}

INVALID - The bank account
amount might change, leading
to accounts with the same
routing number being put in
different buckets

Hash Functions: Good or Bad
struct BankAccount {
 int routingNumber;
 int amount;
};
Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 long hash = (account.routingNumber *
265443761L) % INT_MAX;
 return hash;
}

Hash Functions: Good or Bad
struct BankAccount {
 int routingNumber;
 int amount;
};
Two bank account objects are considered equal if they have the
same routing number.

int hash(BankAccount account) {
 return (account.routingNumber * 265443761L) %
INT_MAX;

}

VALID and GOOD - given the
same routing number, this will
always return the same number,
and it’s spread relatively evenly
over all possible (positive)
integers

*Taken from StackOverflow

Using Hash Functions
Hash Functions are used to assign elements to buckets for a
HashSet or HashMap.

int bucket(elem) {
 return hash(elem) % numBuckets;
}

Using Hash Functions
Let’s say our hash function returned the length of the string we’re
hashing and we have 3 buckets. Our buckets may look like:

Inside each bucket, we have a LinkedList of elements

boy

CS106B

lilies

a

feature

many

features

to

Using Hash Functions
When we search for an element, we look in it’s bucket

Search CS106B: look in bucket 0 and look through the whole
LinkedList

boy

CS106B

lilies

a

feature

many

features

to

Trees!

Trees!
- Just linked lists with > 1 next pointer, no cycles, and max 1

parent per node
- Ex: Binary Trees, Trinary Trees, N-ary Trees

Tree Exercise I: Traversing

Write a Boolean recursive function areIdentical(TreeNode * root1,
TreeNode* root2) that checks if two binary trees are identical.

NO! YES

bool areIdentical(TreeNode *root1, TreeNode *root2) {

 if (root1 == NULL && root2 == NULL) {

 return true;

 } else if (root1 != NULL && root2 != NULL) {

 return areIdentical(root1->left) && areIdentical(root1->right) &&

 areIdentical(root2->left) && areIdentical(root2->right)

 } else {

 return false;

 }

}

Tree Exercise I - Recursion!

Program logic:

● Check for value equivalence at each
node

● Traverse the trees simultaneously

Binary Search Trees!

BSTs

For every node, X, all the items in its left subtree are smaller than X, and
the items in the right tree are larger than X.

Need to balance

BST Exercise I

Write a BinaryTree member function BinaryTree::keepRange(int min,
int max) that removes all nodes outside of that range (inclusive) and
maintains Binary Tree structure.

keepRange(3,9)

BST Exercise I

Write a BinaryTree member function BinaryTree::keepRange(int min,
int max) that removes all nodes outside of that range (inclusive) and
maintains Binary Tree structure.

keepRange(3,9)

BST Exercise I

Write a BinaryTree member function BinaryTree::keepRange(int min,
int max) that removes all nodes outside of that range (inclusive) and
maintains Binary Tree structure.

keepRange(3,9)

BST Exercise I

Write a BinaryTree member function BinaryTree::keepRange(int min,
int max) that removes all nodes outside of that range (inclusive) and
maintains Binary Tree structure.

keepRange(3,9)

BST Exercise I

Write a BinaryTree member function BinaryTree::keepRange(int min,
int max) that removes all nodes outside of that range (inclusive) and
maintains Binary Tree structure.

keepRange(3,9)

BST Exercise I

Write a BinaryTree member function BinaryTree::keepRange(int min,
int max) that removes all nodes outside of that range (inclusive) and
maintains Binary Tree structure.

keepRange(3,9)

void BinaryTree::keepRange(int min, int max) {

 keepRangeHelper(root, min, max);

}

void keepRangeHelper(TreeNode*& currentNode, int min, int max)) {

if (currentNode != NULL) {

keepRangeHelper(currentNode->left, min, max);

keepRangeHelper(currentNode->right, min, max);

if (currentNode->value < min) {

currentNode = currentNode->right;

}

if (currentNode->value > max) {

currentNode = currentNode->left;

}

}

}

BST Exercise I - Remove from leaves up!
Program logic:

● We need a helper function!
● We can remove leaves from

the bottom up
● We can use *& to modify the

actual pointer stored in the
tree structure

● Challenge: Do this without
recursion!

● What about memory??

void BinaryTree::keepRange(int min, int max) {

 keepRangeHelper(root, min, max);

}

void keepRangeHelper(TreeNode*& currentNode, int min, int max)) {

if (currentNode != NULL) {

keepRangeHelper(currentNode->left, min, max);

keepRangeHelper(currentNode->right, min, max);

if (currentNode->value < min) {

TreeNode* trash = currentNode;

currentNode = currentNode->right;

delete trash;

}

if (currentNode->value > max) {

TreeNode* trash = currentNode;

currentNode = currentNode->left;

delete trash;

}

}

}

BST Exercise I - Remove from leaves up!
Program logic:

● We need a helper function!
● We can remove leaves from

the bottom up
● We can use *& to modify the

actual pointer stored in the
tree structure

● Challenge: Do this without
recursion!

Heaps!

Heaps

A heap is a tree-based structure that satisfies the heap property: Parents
have a higher priority key than any of their children.

Heaps are completely filled, with the exception of the bottom level.
(always balanced)

Often stored in arrays

These are binary heaps -->

Heap Exercise I

What are the minimum and maximum
numbers of elements in a heap of

height h?

Heap Exercise I

What are the minimum and maximum
numbers of elements in a heap of

height h?

Height = 3

Height = 3

Heap Exercise I

What are the minimum and maximum
numbers of elements in a heap of

height h?

(max if complete)

(min if the lowest level has just 1 element and the
other levels are complete)

Height = 3

Height = 3

Heap Exercise II: Is it a Heap?

Heap Exercise II: Is it a Heap?

Graphs & Graph
Algorithms

Graphs

Like a tree but with NO RULES!

Types of Graphs:

- Directed vs. Undirected
- Weighted vs. Unweighted
- Cyclic vs. Acyclic
- Connected
- Complete

Graph Exercise I

Write a BasicGraph member function bool
BasicGraph::isFriendOfFriend(Vertex* friend1, Vertex*

friend2) that returns true if friend1 and friend2 share a mutual
friend.

Graph Exercise I

Write a BasicGraph member function bool
BasicGraph::isFriendOfFriend(Vertex* friend1, Vertex*

friend2) that returns true if friend1 and friend2 share a mutual
friend.

red and green? TRUE
red and blue? FALSE
red and orange? FALSE
red and red? FALSE

Graph Exercise I - Remember edge cases!

bool isFriendOfFriend(BasicGraph& graph, Vertex* friend1, Vertex* friend2) {

if (friend1 == friend2) {

return false;

}

for (Vertex* mutual_friend : graph.getNeighbors(friend1)) {

for (Vertex* friendsfriend : graph.getNeighbors(mutual_friend)) {

if (friendsfriend == friend2) {

return true;

}

}

}

return false;

}

Challenge: Generalize this to take in a
parameter n which represents how many
degrees of separation must be between
friend1 and friend2!

Graph Algorithms

- BFS vs DFS
- Exercise: Which is guaranteed to find the shortest path?

- What if paths have costs?
- Dijkstra (like BFS but PQ instead of Queue)
- A* (like Dijkstra but with a heuristic added to path priority

Graph Algorithms

- BFS vs DFS
- Exercise: Which is guaranteed to find the shortest path? BFS

- What if paths have costs?
- Dijkstra (like BFS but PQ instead of Queue)
- A* (like Dijkstra but with a heuristic added to path priority

Graph Exercise II: Tracing

In what order would BFS
mark the nodes as
visited when searching
for a path from B to I?

What path would be
returned?

Graph Exercise II: Tracing

In what order would BFS
mark the nodes as
visited when searching
for a path from B to I?

What path would be
returned?

Graph Exercise II: Tracing

In what order would BFS
mark the nodes as
visited when searching
for a path from B to I?

What path would be
returned?

Graph Exercise II: Tracing

In what order would BFS
mark the nodes as
visited when searching
for a path from B to I?

What path would be
returned?

Graph Exercise II: Tracing

In what order would BFS
mark the nodes as
visited when searching
for a path from B to I?

What path would be
returned?

Graph Exercise II: Tracing

In what order would BFS
mark the nodes as
visited when searching
for a path from B to I?
{B,C,E,H,I}

What path would be
returned?
{B,E,I}

Types of Graph Problems

● Tracing algorithms (ex: in which order does DFS find the
nodes)

● Testing a property (ex: isReachable)
● Building up a collection (ex: find all friends n degrees of

separation away)
● And more!

Minimum Spanning Trees

Minimum Spanning Tree

*Algorithm to find one: Kruskal’s

More practice

For more practice, check out section handouts 7 and 8 as well
as the lectures and section handouts from cs106x, located at
cs106x.stanford.edu

