Answers to extra practice problems

1. Simple algorithmic tracing (5 points)

The nodes are visited in the following order: Mount Doom, Black Gate, Cirith Ungol,
Rauros, Minas Tirith, Edoras, Lorien, Isengard, Caradhras, Moria, Southfarthing, Rivendell,
Hobbiton, Bree.

2. Recursion (15 points)

Function: filenameMatches
Usage: if (filenameMatches (filename, pattern))

This function checks to see whether filename matches the pattern,
which consists of three types of characters:

1. The character ?, which matches any single character
2. The character *, which matches any string of characters
3. Any other character, which matches only that character

* % ok Ok F Ok X Ok % *

*
~

bool filenameMatches (string filename, string pattern) {
if (pattern == "") return (filename == "");
int n = filename.length();
switch (pattern[0]) {

case '?':

if (filename == "") return false;

return filenameMatches (filename.substr(l), pattern.substr(l));
case '*':

for (int i = 0; i <= n; i++) {
if (filenameMatches (filename.substr (i), pattern.substr(l))) {
return true;
}
}
return false;
default:
if (filename == "" || pattern[0] != filename[0]) return false;
return filenameMatches (filename.substr(l), pattern.substr(l));

3. Linear structures and hash tables (15 points)

/*
* Implementation notes: rehash
*

* This code walks through every cell in the old bucket array and reinserts
* the key/value pair into the new hash table.
*/

template <typename KeyType, typename ValueType>

void HashMap<KeyType,ValueType>: :rehash (int nBuckets) {
int oldNBuckets = this->nBuckets;
Cell **oldBuckets = buckets;

Ehis->nBuckets = nBuckets; Note, students were fold in the exam
buckets = new Cell *[nBuckets]; what rehash was!

for (int i = 0; i < nBuckets; i++) {
buckets[i] = NULL;
}
for (int i = 0; i < oldNBuckets; i++) {
for (Cell *cp = oldBuckets[i]; cp != NULL; cp = cp->link) ({
put (cp—->key, cp->value);
}

}
delete[] oldBuckets;

4. Trees (15 points)

Implementation notes: fillVector

The strategy for filling a vector is simply a matter of executing
an inorder traversal of the tree, adding all the nodes before this
one, then the current node, and finally all nodes after this one.

* %k * F O *

*/

void fillVector (BSTNode *node, Vector<BSTNode *> & v) {
if (node != NULL) {
fillVector (node->left, v);
v.add (node) ;
fillVector (node->right, v);

Implementation notes: rebuildTree

The rebuildTree method operates by selecting a new root as the
node at the midpoint of the sorted vector. It then recursively
fills in the left and right subtrees by applying the same
strategy one level down.

* %k %k * F O *

*/

BSTNode *rebuildTree (Vector<BSTNode *> & v, int start, int end) {
if (start > end) return NULL;
int mid = (start + end) / 2;
BSTNode *np = v[mid];
np—>left = rebuildTree (v, start, mid - 1);
np—>right = rebuildTree(v, mid + 1, end);
return np;

5. Graphs (15 points)

/* Constants */
const int MAX SUGGESTIONS = 3; /* Maximum number of friend suggestions */
/*
* Function: suggestFriends
* Usage: suggestFriends (g, person);
*
* Makes suggestions for new friends for the specified person in the
* graph. This function lists up to MAX SUGGESTIONS people, sorted
* in descending order by the number of mutual friends.
*/
void suggestFriends (Graph<Node,Arc> & g, Node *person) {
Set<Node *> candidates = g.getNodeSet();
candidates.clear();
for (Node *node g.getNeighbors (person)) {
candidates += g.getNeighbors (node);
}
candidates —-= person;
candidates —-= g.getNeighbors (person);
PriorityQueue<Node *> queue;
for (Node *node candidates) {
queue.enqueue (node, —countMutualFriends (g, person, node));
}
cout << "Friend suggestions:" << endl;
for (int i = 0; i < MAX SUGGESTIONS && !queue.isEmpty(); i++) {
Node *node = queue.dequeue();
int count = countMutualFriends (g, person, node);
string noun = (count == 1) ? "friend" "friends";
cout << " " << node->name << (" << count << " mutual ";
cout << ((count == 1) ? "friend" "friends") << ")" << endl;
}
}
/*
* Function: countMutualFriends
* Usage: int n = countMutualFriends(g, nl, n2);
*
* Returns the number of mutual friends shared by nl and n2 in the
* graph g. You can write this function without passing the graph
* as an argument, but doing so makes it impossible to take advantage
* of the getNeighbors and isConnected methods provided by the Graph
* class.
*/
int countMutualFriends (Graph<Node,Arc> & g, Node *nl, Node *n2) {
int count = 0O;
for (Node *node g.getNeighbors (nl)) {
if (g.isConnected(node, n2)) count++;
}
return count;
}

6. Data structure design (15 points)
6a)

/* Private section */

private:

~
*

Implementation notes: BigInt data structure

The BigInt data structure stores the digits in the number in

a linked list in which the digits appear in reverse order with
respect to the items in the list. Thus, the number 1729 would
be stored in a list like this:

The sign of the entire number is stored in a separate instance
variable, which is -1 for negative numbers and +1 otherwise.
Leading zeros are not stored in the number, which means that
the representation for zero is an empty list.

* % % ok % ok 2k % ok % Ok Ok Kk F F F F F
o
|
|
+
|
|
U
v
o
|
v
N
U
v
~
|
v
[y

* This structure type holds a single digit in the linked list.
*/
struct Cell {
int digit;
Cell *1link;
b

/* Instance variables */

Cell *start; /* Linked list of digits */
int sign; /* Sign of the number (-1 or +1) */

}i

6b)

/*

*

File: bigint.cpp
*

* This file implements the bigint.h interface.

*/

#include <cctype>
#include <string>
#include "bigint.h"
#include "error.h"
using namespace std;

/*
* Implementation notes: BigInt constructor
*
* The code for this constructor offers a minimal implementation
* that matches what we would expect on an exam. In a more
* sophisticated implementation, it would make sense to include
* a test to avoid storing leading zeros in the linked list. 1In
* this implementation, calling BigInt ("00042") creates a
* BigInt with a different internal representation than
* BigInt ("42"), which is probably a bad idea.
*/
BigInt: :BigInt (string str) {
if (str == "" || str == "-") error("BigInt: illegal format");
start = NULL;
sign = 1;
if (str[0] == '-') {
sign = -1;

str = str.substr(1l);
}
int n = str.length();
for (int i = 0; i < n; i++) {
char ch = str[i];
if (!'isdigit(ch)) error("BigInt: illegal format");
Cell *cp = new Cell;
cp—->digit = ch - '0’';
cp—->link = start;
start = cp;

Implementation notes: BigInt destructor

The code for the destructor is similar to that of the other
classes that contain a linked list. You need to store the
pointer to the next cell temporarily so that you still have
it after you delete the current cell.

* % % ok F X %

*/

BigInt: :~BigInt () {
Cell *cp = start;
while (cp != NULL) {
Cell *next = cp->link;
delete cp;
cp = next;

Implementation notes: toString

This method could also be written as a wrapper method that
calls a recursive function that creates the reversed string
one character at a time. I've used an iterative formulation
here to avoid having to declare the private method in the
bigintpriv.h file.

* % % Ok %k X % %

*
~

string BigInt::toString() {
string str = "";
for (Cell *cp = start; cp != NULL; cp = cp->1link) {
str = char(cp—->digit + '0') + str;
}
if (sign == -1) str = "-" + str;
return str;

