
 Page 1 of 10

CS106B Chris and Chris

Fall 2016 Nov 3rd, 2016

CS106B Midterm (KEY)
	

This is an open-note, open-book exam. You can refer to any course handouts, textbooks,
handwritten lecture notes, and printouts of any code relevant to any CS106B assignment.
You may not use any laptops, cell phones, or internet devices of any sort. You will be
graded on functionality—but good style helps graders understand what you were
attempting. You do not need to #include any libraries and you do not need to forward
declare any functions. You have 2 hours. We hope this exam is an exciting journey.

Last Name: _____________________

First Name: _____________________

Sunet ID (eg jdoe): _____________________

Section Leader: _____________________

I accept the letter and spirit of the honor code. I’ve neither given nor received aid on
this exam. I pledge to write more neatly than I ever have in my entire life.

 (signed) ___
	

	

	 	 	 	 Score	 	 	 Grader	

1.	 Destiny’s	 Trace	 [12]	 ______	 	 ______	

2.	 Grade	 Histogram	 [15]	 ______	 	 ______	

3.	 Rotate	 Image	 [18]	 ______	 	 ______	

4.	 Autonomous	 Art	 [15]	 ______	 	 ______	

	
Total	 [60]	 ______	 	 ______	

	

	

	 	

 Page 2 of 10

Question 1: Destiny’s Trace (12 points)

int beyonce(int n) {
 int sum = 0;
 while(n > 0) {
 sum += kelley(n);
 n /= 2;
 }
 return sum;
}

int kelley(int m) {
 int sum = 0;
 for(int i = 0; i < m; i++) {
 for(int j = 0; j <= i; j++) {
 michelle(i, sum);
 }
 }
 return sum;
}

void michelle(int n, int & sum) {
 for(int j = 0; j < 3; j++) {
 sum += n;
 }
 sum++;
}

(a) [3 points] What is the result of kelley(3)?

kelley(3) returns the value 30

 Page 3 of 10

(b) [3 points] What is the result of beyonce(3)?

beyonce(3) returns the value 31

(c) [2 points] What is the computational complexity of the michelle function
expressed in terms of big-O notation, where N is the value of the parameter n?

O(1)

(d) [2 points] What is the computational complexity of the kelley function expressed
in terms of big-O notation, where N is the value of the parameter m?

O(n2)

(e) [2 points] What is the computational complexity of the beyonce function expressed
in terms of big-O notation, where N is the value of the parameter n?

O(logn n2) is correct (full credit)

O(n2) is even better and we gave extra credit if you showed the
geometric series sum explanation.

 Page 4 of 10

Question 2: Grade Distribution Histogram (15 points)

A common way to visualize how a class of students perform on exams is by using a
histogram, which provides an estimate of the probability distribution of the grades for
the exam. For example, given the following scores on an exam, we can draw the
histogram (shown to the right), which represents how many students received grades in
the 60s, 70s, 80s, and 90s.

Student Grade
StudentA 97
studentB 89
studentC 93
studentD 75
studentE 94
studentF 85
studentG 88
studentH 68
studentI 79
studentJ 84

A histogram can also be used to determine the distribution of grades for an entire
quarter, based on an average of each student’s grades.

Consider the following map which associates student names with a vector of their
grades for the quarter. We would like to produce a histogram of student averages. In
other words, average each student’s grades, then produce a histogram of the averages.
The histogram for the averages is shown to the right:

Given a map of student names (strings) as keys, and a vector (ints) to each student’s
scores, your job is to write the following three functions:

Student Grade Average
studentA 97, 92, 88 92.3

studentB 89, 93, 77 86.3
studentC 93, 95, 105 97.7
studentD 75, 25, 50 50
studentE 94, 94, 94 94
studentF 85, 82, 73 80
studentG 88, 91, 99 92.7
studentH 68, 78, 88 78
studentI 79, 85, 77 80.3
studentJ 84, 85, 86 85

Histogram:
60s: *
70s: **
80s: ****
90s: ***

Histogram of Averages:
50s: *
70s: *
80s: ****
90s: ****

 Page 5 of 10

[4 points]
// Returns the average value of a vector of integers.
// Assumes there is at least one grade.
double average(Vector<int> & gradeVec) {

 // assumption: there is at least one grade
 double sum = 0;
 for (int grade : gradeVec) {
 sum += grade;
 }
 return sum / gradeVec.size();

}

[7 points]
// Produce a map of average grade distributions, grouped by
// tens (e.g., if 8 people scored an average in the 90s, there
// would be a key in the map for 90, and its value would be 8)
void histogram(Map<string,Vector<int>> & grades,
 Map<int,int> & hist) {

 for (string key : grades) {
 int avg = (int)(average(grades[key]))/10 * 10;
 hist[avg]++;
 }

}

 Page 6 of 10

Question 2: Grade Distribution Histogram (continued)

[4 points]
// Print a histogram in the following form:
// 50s:***
// 60s:*****
// 70s:**
// 80s:***
// 90s:******
//
// For the example above, the map holds the
// following key/value pairs: {50:3, 60:5, 70:2, 80:3, 90:6}
// Assume that keys and values are positive and that keys are
// multiples of ten.
void printHistogram(Map<int,int> & hist) {

 // print the grade then a line of asterisks for the total
 for (int key : hist) {
 cout << key << "s:";
 for (int i=0; i < hist[key]; i++) {
 cout << "*";
 }
 cout << endl;
 }

}

 Page 7 of 10

Question 3: Rotate Image (18 points)

In the Fauxtoshop assignment, you were asked to write a number of filters for images
stored in a Grid<int>. Almost all photo-manipulation programs also have a function
that rotates images, and the user can type in an angle to rotate the image. One way to
rotate an image clockwise around its center point is as follows:

For each pixel in the rotated image at coordinate (x, y), copy the color of the pixel from
the original image closest to (xOld, yOld) such that:

xOld = + x • cos(𝜃) + y · sin(𝜃)
yOld = - x • sin(𝜃) + y • cos(𝜃)

Where:
• 𝜃 is the angle of rotation.
• x coordinates represent number of pixels to the right of the image center (or, if

negative, the number of pixels to the left of the center).
• y coordinates represent number of pixels below the image center (or, if negative, the

number of pixels above the image center).

You will need to translate between rows and columns and x and y coordinates. As an
example, the grid cell (row = height/2, col = width/2) translates to coordinate
(x = 0, y = 0).

One thing to consider when rotating a non-circular image is that some of the rotated
pixels will not fit in the grid. Think about rotating the following rectangle by 45º:

Additionally, part of the new image will not receive any rotated pixels. In this case, we
will make those pixels white (suggestion: make the new grid completely white to start).

Using the rotation equations above, complete the two functions: (1) makeWhite which
populates a Grid<int> with white, and (2) rotateImage which rotates an image by
angle number of degrees

You can use the following helper functions:

Function Return value

double cos(x), where x is in degrees. The cosine of x

double sin(x), where x is in degrees. The sine of x

int round(x) Mathematical rounding.

Rotated
around center

of image

 Page 8 of 10

[3 points]
const int WHITE = 0xFFFFFF;

// makes every pixel in the given grid white.
void makeWhite(Grid<int> & image) {

 for (int r=0; r < grid.numRows(); r++) {
 for (int c=0; c < grid.numCols(); c++) {
 grid[r][c] = WHITE;
 }
 }

}

[15 points]
// modify the grid so that it represents an image
// rotated by theta number of degrees.
void rotateImage(Grid<int>& image, double theta) {

 Grid<int> newGrid(grid.numRows(),grid.numCols());

 double midC = (grid.numCols()-1) / 2.0;
 double midR = (grid.numRows()-1) / 2.0;

 makeWhite(newGrid);

 for (int r=0; r < grid.numRows(); r++) {
 for (int c=0; c < grid.numCols(); c++) {
 // calculate offset locations to rotate around middle
 double x = c - midC;
 double y = r - midR;

 double xOld = x * cos(degrees)
 + y * sin(degrees);
 double yOld = -x * sin(degrees)
 + y * cos(degrees);

 // undo the column offset
 int cOld = (int)(round(xOld + midC));

 // undo the row offset
 int rOld = (int)(round(yOld + midR));

 if (grid.inBounds(rOld,cOld)) {
 newGrid[r][c] = grid[rOld][cOld];
 }
 }
 }
 grid = newGrid;

}

 Page 9 of 10

Question 4: Autonomous Art (15 points)

If we could generate all images presumably we would recreate the Mona Lisa and
generate novel artwork!

Write a function genImages that generates and saves all possible images of a given
width and height using a fixed palette of colors.

As an example, for a picture that is 2 pixels by 2 pixels made up of colors light-grey
and dark-grey there are 16 possible images. Here are all 16 possibilities:

Each picture is represented as a Grid<int>.

The input to your genImages function is the target size of the image (the number of
rows and columns in the underlying grid) and a vector which contains all colors that
can be used in the picture.

Your function should work for any positive grid dimensions (rows and cols) and any
vector of colors with size greater than 0.

Your function should save each image using a call to a helper method saveImage that
we provide and that you don’t have to write:

void saveImage(Grid<int> & image);

Hint: The color of each pixel is a decision. Come up with a recursive helper function
that can explore all possible combinations of decisions.

 Page 10 of 10

void genImages(Vector<int>& colors, int rows, int cols){
 Grid<int> grid(rows, cols);
 helper(colors, grid, 0, 0);
}

void helper(Vector<int>& colors, Grid<int>& grid,
 int r, int c) {

 // base case
 if(!grid.inBounds(r, c)) {
 saveImage(grid);
 } else {

 // calculate next pixel position
 int nextR = r;
 int nextC = c + 1;
 if(nextC == grid.nCols) {
 nextR = r + 1;
 nextC = 0;
 }

 // try each color choice and recurse from next pos.
 for(int color : colors) {
 grid[r][c] = color;
 helper(colors, grid, nextR, nextC);
 }
 }
}

}

