
Monday, October 17, 2016

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 9

CS 106B
Lecture 10: Exhaustive
Search and Recursive
Backtracking

Today's Topics
•Logistics:
•YEAH Hours for MetaAcademy today! 7-8pm, 420-041; Will be recorded
•All midterm accommodations: let us know by Friday at Noon.
•Midterm is Thursday, November 3rd!

•Cutting Edge Fauxtoshop
•More on Recursion, Trees, and "Exhaustive Search"
•Permutations
•Maze

•Recursive Backtracking

Cutting Edge Fauxtoshop
Chris Piech and Chris Gregg went to a CS Faculty Retreat this weekend. One of
the speakers was Stanford Professor (emeritus) Mark Levoy, who now works at
Google Research on cameras and photography.

Professor Levoy gave a talk about a side-project of his, called "Extreme imaging
using cell phones."

This video demonstrates an amazing phone app he wrote.

Almost his entire talk involved manipulating images, in a more advanced but very
similar way to your Fauxtoshop project — it is amazing what you can do with
software these days! The camera was a normal Android camera, and all the
manipulation was in software.

The following three slides show what he has accomplished — really amazing!

Cutting Edge Fauxtoshop

Cutting Edge Fauxtoshop

Cutting Edge Fauxtoshop

Where We Are (Borrowed from Chris P)

Jumble

• Since 1954, the JUMBLE has been a
staple in newspapers.

• The basic idea is to unscramble the
anagrams for the words on the left, and
then use the letters in the circles as
another anagram to unscramble to
answer the pun in the comic.

• As a kid, I played the puzzle every day, but
some days I just couldn't descramble the
words. Six letter words have 6! == 720
combinations, which can be tricky!

• I figured I would write a computer
program to print out all the permutations!

Jumble

• Since 1954, the JUMBLE has been a
staple in newspapers.

• The basic idea is to unscramble the
anagrams for the words on the left, and
then use the letters in the circles as
another anagram to unscramble to
answer the pun in the comic.

• As a kid, I played the puzzle every day, but
some days I just couldn't descramble the
words. Six letter words have 6! == 720
combinations, which can be tricky!

• I figured I would write a computer
program to print out all the permutations!

D I N K Y

A G I L E

E N C O R E

D E V O U T
A D D I T I O N
D I A I N O D T

Permutations

void permute4(string s) {
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4 ; j++) {
 if (j == i) {
 continue; // ignore
 }
 for (int k = 0; k < 4; k++) {
 if (k == j || k == i) {
 continue; // ignore
 }
 for (int w = 0; w < 4; w++) {
 if (w == k || w == j || w == i) {
 continue; // ignore
 }
 cout << s[i] << s[j] << s[k] << s[w] << endl;
 }
 }
 }
 }
}

My original function to print out all permutations of four letters:

Permutations

void permute5(string s) {
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5 ; j++) {
 if (j == i) {
 continue; // ignore
 }
 for (int k = 0; k < 5; k++) {
 if (k == j || k == i) {
 continue; // ignore
 }
 for (int w = 0; w < 5; w++) {
 if (w == k || w == j || w == i) {
 continue; // ignore
 }
 for (int x = 0; x < 5; x++) {
 if (x == k || x == j || x == i || x == w) {
 continue;
 }
 cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;
 }
 }
 }
 }
 }
}

I also had a permute5() function…

Permutations

void permute6(string s) {
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5 ; j++) {
 if (j == i) {
 continue; // ignore
 }
 for (int k = 0; k < 5; k++) {
 if (k == j || k == i) {
 continue; // ignore
 }
 for (int w = 0; w < 5; w++) {
 if (w == k || w == j || w == i) {
 continue; // ignore
 }
 for (int x = 0; x < 5; x++) {
 if (x == k || x == j || x == i || x == w) {
 continue;
 }
 for (int y = 0; y < 6; y++) {
 if (y == k || y == j || y == i || y == w || y == x) {
 continue;
 }
 cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << s[y] << endl;
 }
 }
 }
 }
 }
 }
}

And a permute6() function…

What has been seen
cannot be un-seen

This is not tenable!

Tree Framework — Permutations
• Permutations do not lend themselves well to iterative looping because we are really

rearranging the letters, which doesn't follow an iterative pattern.
• Instead, we can look at a recursive method to do the rearranging, called an exhaustive

algorithm. We want to investigate all possible solutions. We don't need to know how many
letters there are in advance!

• In pseudocode:
If you have no more characters left to rearrange, print current permutation
for (every possible choice among the characters left to rearrange) {
 Make a choice and add that character to the permutation so far
 Use recursion to rearrange the remaining letters
}

• In English:
• The permutation starts with zero characters, as we have all the letters in the original string

to arrange. The base case is that there are no more letters to arrange.
• Take one letter from the letters left, add it to the current permutation, and recursively

continue the process, decreasing the characters left by one.

Tree Framework — Permutations
• The algorithm in C++:

void permute(string soFar, string rest) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permute(soFar + rest[i], remaining);
 }
 }
}

• Example call:
• recPermute("","abcd");

Tree Framework — Permutations
soFar: ""

rest: "abcd"

"a"
"bcd"

"b"
"acd"

"c"
"abd"

"d"
"abc"

ab
cd

ac
bd

ad
bc

ba
cd

bc
ad

bd
ac

ca
bd

cb
ad

cd
ab

da
bc

db
ac

dc
ab

abc
d

abd
c

acb
d

acd
b

adb
c

adc
b

bac
d

bad
c

bca
d

bcd
a

bda
c

bdc
a

cab
d

cad
b

cba
d

cbd
a

cda
b

cdb
a

dab
c

dac
b

dba
c

dbc
a

dca
b

dcb
a

abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cbda cdab cdba dabc dacb dbac dbca dcab dcba

✓ Exhaustive
✓ Works for any length string
✓ N! different results
✓ Can think of this as a "call tree" or a "decision tree"

This is a tree!

Tree Framework — Helper functions
• Here is the algorithm again:

void permute(string soFar, string rest) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permute(soFar + rest[i], remaining);
 }
 }
}

• Some might argue that this isn't a particularly good function, because it
requires the user to always start the algorithm with the empty string for the
soFar parameter. It's ugly, and it exposes our internal parameter.

• What we really want is a permute(string s) function that is cleaner.
• We can re-name the function above permuteHelper() (and change the

inner call, as well!), and have a cleaner permute function that calls this one.

Tree Framework — Helper functions
• The cleaner interface:

void permuteHelper(string soFar, string rest) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permuteHelper(soFar + rest[i], remaining);
 }
 }
}

void permute(string s) {
 permuteHelper("", s);
}

• Now, a user only has to call permute("tuvedo"), which hides the helper
recursion parameter.

Backtracking
• Backtracking is a method for trying partial

solutions to some search and abandoning them
if they aren't suitable or successful.

• A classic example is solving a maze: if you go
down one path and it isn't the correct path, then
you backtrack to your last decision point to try
an alternate path.

• If you are using an object passed by reference
you need to either undo (or "un-choose") paths
that fail, or somehow mark them in your object.

Billy Mays Maize Maze

• For a maze, for instance, you don't want to try and traverse the same path
twice, so you need to mark whether you have been down that path before.

Maze Solving

• The code for today's class includes a text-based
recursive maze creator and solver.

• The mazes look like the one to the right
• There is a Start (marked with an "S") and a

Finish (marked with an "F").
• The Xs represent walls, and the spaces

represent paths to walk through the maze.

XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

Maze Solving

• The solution to the maze is shown here (video):

Maze Solving
XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
XS..X.........X
XXX.X.XXXXXXX.X
X X.X...X.....X
X X.XXX.X.XXXXX
X X.....X.X...X
X XXXXXXX.X.X.X
X X... X...X.X
X X.X.XXXXXXX.X
X...X.......X.X
X.XXXXXXXXX.X.X
X.........X...X
XXXXXXXXX.XXXXX
X FX
XXXXXXXXXXXXXXX

• The program will put
dots in the correct
positions.

Maze Solving
XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
XS..X.........X
XXX.X.XXXXXXX.X
XbX.X...X.....X
XbX.XXX.X.XXXXX
XbX.....X.X...X
XbXXXXXXX.X.X.X
XbX...bbX...X.X
XbX.X.XXXXXXX.X
X...X.......X.X
X.XXXXXXXXX.X.X
X.........X...X
XXXXXXXXX.XXXXX
X FX
XXXXXXXXXXXXXXX

• The program will put
dots in the correct
positions.

• But, it will also put
lowercase b's when
it goes in the wrong
direction and has to
backtrack.

Maze Solving

XXXXXXXXX
XS X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• What are some actual methods for solving a maze?
• "Hand on a wall" -- put one hand on a wall at the start and keep

following. Eventually you will reach the finish (circular paths may
disrupt this method).

• Break through walls (best for Corn Mazes)
• Backtracking! Keep track of where you've been, and

systematically test all solutions. Pick compass directions in
order (e.g., N/E/S/W), returning to check other paths when you
hit dead ends and have tried all combinations.

• Let's use the backtracking method to solve the maze to the right
-- we will go N/E/S/W, from the Start.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• We will mark positions we have seen with a period ('.'), and mark
backtracking with 'b'.

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we

can't go that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we

can't go that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X.. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X.. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)
• Trying north, row=0 and col=3, Hit wall! Back at row=1 and col=3,
• Trying east, row=1 and col=4, Hit wall! Back at row=1 and col=3,
• Trying south, row=2 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)
• Trying north, row=0 and col=3, Hit wall! Back at row=1 and col=3,
• Trying east, row=1 and col=4, Hit wall! Back at row=1 and col=3,
• Trying south, row=2 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X.XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

...
(continues)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X.XXX X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

...
(continues)

What happens here?

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

...
(continues)

What happens here?
Bummer. We check North first, so we start going up.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.X.X.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

Now what?

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.X.X.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.XbX.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.XbX.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Now, we are "remembering" where we have been because we've been keeping
track of our positions and what we last checked at a given position -- we will use
recursion to do this!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Now, we are "remembering" where we have been because we've been keeping
track of our positions and what we last checked at a given position -- we will use
recursion to do this!

We will arrive back at row=5, col=7 quickly.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)
• Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
• Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
• Trying south, row=7 and col=7, Found the Finish!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)
• Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
• Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
• Trying south, row=7 and col=7, Found the Finish!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)
• Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
• Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
• Trying south, row=7 and col=7, Found the Finish!

The total number of steps: 71!

That seems like a lot of steps to solve such a small maze, but remember, we are
going through a methodical process that must check all paths.

(see extra slides for all steps for this maze)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Our recursive backtracking method for solving mazes must follow the same rules
for all recursion:
(1) have a case for all valid inputs,
(2) must have base cases,
(3) make forward progress towards the base case.

Let's start with the base cases. How many are there?

(1) If we go out of the bounds of the maze (the grid bounds).
• This actually won't happen for our mazes, because we have surrounded all

paths with walls.
(2) If we hit a backtracked position ('b')
•Also won't happen, because once we mark as backtracked, we'll never get
there again.

(3) If we hit a wall ('X')
(4) If we hit a position we have seen before ('.')
(5) If we find the finish ('F')

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {

if (maze[row][col] == 'X') {
 return false;
}

if (maze[row][col] == '.') {
 return false;
}

if (maze[row][col] == 'F') {
 return true;
}

}

Base cases:
Returning true means we have solved the maze!
Returning false means that this path does not solve the maze.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {

if (maze[row][col] == 'X') {
 return false;
}

if (maze[row][col] == '.') {
 return false;
}

if (maze[row][col] == 'F') {
 return true;
}

maze[row][col] = '.';
}

Once we take care of our base cases, we'd better mark the
position we are at!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {

...

maze[row][col] = '.';

 // Recursively call solveMazeRecursivePrint(row,col)
 // for north, east, south, and west
 // If one of the positions returns true, then return true

 // north
 if (solveMazeRecursivePrint(row-1,col,maze) == true) {
 return true;
 }

...
}

Now we can recurse -- we have to check all directions!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {
 ...
 // north
 if (solveMazeRecursive(row-1,col,maze) == true) {
 return true;
 }

 // east
 if (solveMazeRecursive(row,col+1,maze) == true) {
 return true;
 }

 // south
 if (solveMazeRecursive(row+1,col,maze) == true) {
 return true;
 }

 // west
 if (solveMazeRecursive(row,col-1,maze) == true) {
 return true;
 }

 maze[row][col] = 'b';
 return false;
}

All four recursions. If all four return, we have to backtrack!

Maze Solving

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {
 if (maze[row][col] == 'X') {
 return false;
 }

 if (maze[row][col] == '.') {
 return false;
 }

 if (maze[row][col] == 'F') {
 return true;
 }

 maze[row][col] = '.';

The entire recursive function (not too long!)

 // north
 if (solveMazeRecursive(row-1,col,maze) == true) {
 return true;
 }

 // east
 if (solveMazeRecursive(row,col+1,maze) == true) {
 return true;
 }

 // south
 if (solveMazeRecursive(row+1,col,maze) == true) {
 return true;
 }

 // west
 if (solveMazeRecursive(row,col-1,maze) == true) {
 return true;
 }

 maze[row][col] = 'b';
 return false;
}

Maze Solving: A Decision Tree
XXXXX
XS X
XXX X
X FX
XXXXX

North East South West
dead end never check never check

Maze Solving: A Decision Tree
XXXXX
XS. X
XXX X
X FX
XXXXX

North East South West
wall never check never check

North South West
wall never check never check

East

Maze Solving: A Decision Tree
XXXXX
XS..X
XXX X
X FX
XXXXX

North East South West
wall never check never check

North South West
wall never check never check

East

North South West
wall never check

East
wall

Maze Solving: A Decision Tree
XXXXX
XS..X
XXX.X
X FX
XXXXX

North East South West
wall never check never check

North South West
wall never check never check

East

North South West
wall never check

East
wall

North South West
never check

East
wall Finish!seen before

Maze Solving: A Decision Tree
XXXXXXXXX
XS..X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

North South West
seen

before

East
wall

South West
wall

East
wall wallseen before

Backtracking would involve
traversing back up the tree.

Because we have one shared
grid / maze, we must "undo"!

North

North

Maze Solving: A Decision Tree
XXXXXXXXX
XS..X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

North South West
seen

before

East
wall

South West
wall

East
wall wallseen before

Backtracking would involve
traversing back up the tree.

Because we have one shared
grid / maze, we must "undo"!

North

North
mark 'b'

Maze Solving: A Decision Tree
XXXXXXXXX
XS..X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

North South West
seen

before

East
wall

South West
wall

East
wall wallseen before

Backtracking would involve
traversing back up the tree.

Because we have one shared
grid / maze, we must "undo"!

North

North
mark 'b' wall

Recap

•Some algorithms just don't make sense iteratively, so we must use recursion (or
stacks...but that's for another day!)
•Permutations are a good example. When you solve them, you get a very nice tree
representation.

•Recursive Backtracking can be used to search a system (e.g., a maze) -- you must
either mark where you have been, or "undo" where you have been in order to
progress in the algorithm.

References and Advanced Reading

•References:
• Understanding permutations: http://stackoverflow.com/questions/7537791/
understanding-recursion-to-generate-permutations

• Maze algorithms: https://en.wikipedia.org/wiki/Maze_solving_algorithm

•Advanced Reading:
• Exhaustive recursive backtracking: https://see.stanford.edu/materials/icspacs106b/
h19-recbacktrackexamples.pdf

• Backtracking: https://en.wikipedia.org/wiki/Backtracking

Extra Slides

All steps for Maze starting on slide 22
row=1 and col=1, Marking with period (.)
Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
Trying east, row=1 and col=2, Marking with period (.)
Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
Trying east, row=1 and col=3, Marking with period (.)
Trying north, row=0 and col=3, Hit wall! Back at row=1 and col=3,
Trying east, row=1 and col=4, Hit wall! Back at row=1 and col=3,
Trying south, row=2 and col=3, Marking with period (.)
Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
Trying south, row=3 and col=3, Marking with period (.)
Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
Trying south, row=4 and col=3, Marking with period (.)
Trying north, row=3 and col=3, We came from here! Back at row=4 and col=3,
Trying east, row=4 and col=4, Hit wall! Back at row=4 and col=3,
Trying south, row=5 and col=3, Marking with period (.)
Trying north, row=4 and col=3, We came from here! Back at row=5 and col=3,
Trying east, row=5 and col=4, Marking with period (.)
Trying north, row=4 and col=4, Hit wall! Back at row=5 and col=4,
Trying east, row=5 and col=5, Marking with period (.)
Trying north, row=4 and col=5, Hit wall! Back at row=5 and col=5,
Trying east, row=5 and col=6, Marking with period (.)
Trying north, row=4 and col=6, Hit wall! Back at row=5 and col=6,
Trying east, row=5 and col=7, Marking with period (.)
Trying north, row=4 and col=7, Marking with period (.)
Trying north, row=3 and col=7, Marking with period (.)
Trying north, row=2 and col=7, Marking with period (.)
Trying north, row=1 and col=7, Marking with period (.)
Trying north, row=0 and col=7, Hit wall! Back at row=1 and col=7,
Trying east, row=1 and col=8, Hit wall! Back at row=1 and col=7,
Trying south, row=2 and col=7, We came from here! Back at row=1 and col=7,
Trying west, row=1 and col=6, Marking with period (.)
Trying north, row=0 and col=6, Hit wall! Back at row=1 and col=6,
Trying east, row=1 and col=7, We came from here! Back at row=1 and col=6,
Trying south, row=2 and col=6, Hit wall! Back at row=1 and col=6,
Trying west, row=1 and col=5, Marking with period (.)

Trying north, row=0 and col=5, Hit wall! Back at row=1 and col=5,
Trying east, row=1 and col=6, We came from here! Back at row=1 and col=5,
Trying south, row=2 and col=5, Marking with period (.)
Trying north, row=1 and col=5, We came from here! Back at row=2 and col=5,
Trying east, row=2 and col=6, Hit wall! Back at row=2 and col=5,
Trying south, row=3 and col=5, Marking with period (.)
Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
Failed. Marking bad path with b. Back at row=2 and col=5,
Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,
Trying west, row=1 and col=4, Hit wall! Back at row=1 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=6,
Failed. Marking bad path with b. Back at row=1 and col=7,
Failed. Marking bad path with b. Back at row=2 and col=7,
Trying east, row=2 and col=8, Hit wall! Back at row=2 and col=7,
Trying south, row=3 and col=7, We came from here! Back at row=2 and col=7,
Trying west, row=2 and col=6, Hit wall! Back at row=2 and col=7,
Failed. Marking bad path with b. Back at row=3 and col=7,
Trying east, row=3 and col=8, Hit wall! Back at row=3 and col=7,
Trying south, row=4 and col=7, We came from here! Back at row=3 and col=7,
Trying west, row=3 and col=6, Hit wall! Back at row=3 and col=7,
Failed. Marking bad path with b. Back at row=4 and col=7,
Trying east, row=4 and col=8, Hit wall! Back at row=4 and col=7,
Trying south, row=5 and col=7, We came from here! Back at row=4 and col=7,
Trying west, row=4 and col=6, Hit wall! Back at row=4 and col=7,
Failed. Marking bad path with b. Back at row=5 and col=7,
Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
Trying south, row=6 and col=7, Marking with period (.)
Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
Trying south, row=7 and col=7, Found the Finish!

